
V RajaSekhar              CSE Dept        1 

Python Programming 

MODULE - I 

Agenda: 

 Python Basics,  

 Getting started,  

 Python Objects,  

 Numbers, 

 Sequences: 

 Strings,  

 Lists,  

 Tuples,  

 Set and Dictionary.  

 Conditionals and Loop Structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V RajaSekhar              CSE Dept        2 

Python Basics 

 Python is a general purpose, dynamic, high-level, and interpreted programming 

language. It supports Object Oriented programming approach to develop 

applications. It is simple and easy to learn and provides lots of high-level data 

structures. 

 Python was invented by Guido van Rossum in 1991 at CWI in Netherland.  

 The idea of Python programming language has taken from the ABC programming 

language or we can say that ABC is a predecessor of Python language. 

 There is also a fact behind the choosing name Python. Guido van Rossum was a fan 

of the popular BBC comedy show of that time, "Monty Python's Flying Circus". So 

he decided to pick the name Python for his newly created programming language. 

 Python has the vast community across the world and releases its version within the 

short period. 

 Python is easy to learn yet powerful and versatile scripting language, which makes it 

attractive for Application Development. 

 Python's syntax and dynamic typing with its interpreted nature make it an ideal 

`language for scripting and rapid application development. 

 Python supports multiple programming pattern, including object-oriented, imperative, 

and functional or procedural programming styles. 

 Python is not intended to work in a particular area, such as web programming. That 

is why it is known as multipurpose programming language because it can be used with 

web, enterprise, 3D CAD, etc. 

 We don't need to use data types to declare variable because it is dynamically typed so 

we can write a=10 to assign an integer value in an integer variable. 

 Python makes the development and debugging fast because there is no compilation 

step included in Python development, and edit-test-debug cycle is very fast. 

Features of Python: 

Python provides many useful features to the programmer. These features make it most 

popular and widely used language. We have listed below few-essential feature of Python. 

 Easy to use and Learn 

 Open Source Language 

 Platform Independent: 

https://www.javatpoint.com/classification-of-programming-languages


V RajaSekhar              CSE Dept        3 

 Portability 

 Dynamically Typed 

 Procedure Oriented and Object Oriented  

 Interpreted 

 Extensible 

 Embeddable 

 Extensive Library 

Easy to use and learn: 

Python is a simple programming language. When we read Python program, we can feel like  

Reading English statements. The syntaxes are very simple and only 30+ keywords are 

available. When compared with other languages, we can write programs with very less 

number of lines. Hence more readability and simplicity. 

 

Open Source Language: 

We can use Python software without any licence and it is freeware.Its source code is 

open,so that we can we can customize based on our requirement. 

Eg: Jython is customized version of Python to work with Java Applications. 

 

Platform Independent: 

Once we write a Python program, it can run on any platform without rewriting once again. 

Internally PVM is responsible to convert into machine understandable form. 

 

Portability: 

Python programs are portable. ie we can migrate from one platform to another platform  

very easily. Python programs will provide same results on any paltform. 

 

Dynamically Typed: 

In Python we are not required to declare type for variables. Whenever we are assigning the 

value, based on value, type will be allocated automatically.Hence Python is considered as 

dynamically typed language.But Java, C etc are Statically Typed Languages because we 

have to provide type at the beginning only. 

 

Procedure Oriented and Object Oriented: 

Python language supports both Procedure oriented (like C, pascal etc) and object oriented  

(like C++,Java) features. Hence we can get benefits of both like security and reusability etc 

 

 

 



V RajaSekhar              CSE Dept        4 

Interpreted: 

We are not required to compile Python programs explcitly. Internally Python interpreter 

will take care that compilation. If compilation fails interpreter raised syntax errors. Once 

compilation success then PVM (Python Virtual Machine) is responsible to execute. 

 

Extensible: 

We can use other language programs in Python,The main advantages of this approach are: 

1. We can use already existing legacy non-Python code 

2. We can improve performance of the application 

 

Embedded: 

We can use Python programs in any other language programs. i.e we can embedd Python 

programs anywhere. 

 

Extensive Library: 

Python has a rich inbuilt library.Being a programmer we can use this library directly and we 

are not responsible to implement the functionality. 

 

Versions of Python: 

 

Python Version Released Date 

Python 1.0.0 January 1994 

Python 1.5.0 December 31, 1997 

Python 1.6 September 5, 2000 

Python 2.0 October 16, 2000 

Python 2.1 April 17, 2001 

Python 2.2 December 21, 2001 

Python 2.3 July 29, 2003 

Python 2.4 November 30, 2004 

Python 2.5 September 19, 2006 

Python 2.6 October 1, 2008 

Python 2.7 July 3, 2010 

Python 3.0 December 3, 2008 

Python 3.1 June 27, 2009 

Python 3.2 February 20, 2011 

Python 3.3 September 29, 2012 

Python 3.4 March 16, 2014 



V RajaSekhar              CSE Dept        5 

Python 3.5 September 13, 2015 

Python 3.6 December 23, 2016 

Python 3.7 June 27, 2018 

Python 3.8 October 14, 2019 

Python 3.9 October 2020 

 

Python Applications: 

 The following are different area we can use python programming language 

 

Input and output functions  

 

In Python 2 the following 2 functions are available to read dynamic input from the 

keyboard. 

 1. raw_input() 

 2. input() 

 

1. raw_input(): 

 This function always reads the data from the keyboard in the form of String Format. We  

have to convert that string type to our required type by using the corresponding type casting 

methods. 

Eg: 



V RajaSekhar              CSE Dept        6 

  x=raw_input("Enter a Value:") 

  print(type(x)) It will always print str type only for any input type 

 

2. input(): 

input() function can be used to read data directly in our required format.We are not required 

to perform type casting. 

Eg: 

x=input("Enter a Value) 

type(x) 

20 ===> int 

"DS"===>str 

125.5===>float 

True==>bool 

 

 In Python 3 we have only input() method and raw_input() method is not available.  

 Python3 input() function behaviour exactly same as raw_input() method of Python2. 

i.e every input value is treated as str type only. 

Example: 

x=input("Enter First Number:")  

y=input("Enter Second Number:")  

a = int(x)  

b = int(y)  

print("Sum=",a+b) 

 

output: 

Enter First Number:10 

Enter Second Number:20 

Sum=30 

 

OutPut Function: 

We use the print() function or print keyword to output data to the standard output device 

(screen). This function prints the object/string written in function 

 

Examples: 

print("Hello World")  

We can use escape characters also  

 print("Hello \n World")  

 print("Hello\tWorld")  

 We can use repetetion operator (*) in the string  

 print(10*"Hello")  



V RajaSekhar              CSE Dept        7 

 print("Hello"*10)  

 We can use + operator also  

 print("Hello"+"World") 

Python Comments: 

 Python Comment is an essential tool for the programmers.  

 Comments are generally used to explain the code. We can easily understand the code 

if it has a proper explanation.  

 A good programmer must use the comments because in the future anyone wants to 

modify the code as well as implement the new module; then, it can be done easily. 

 In the other programming language such as C, It provides the // for single-lined 

comment and /*.... */ for multiple-lined comment, but Python provides the single-

lined Python comment.  

 To apply the comment in the code we use the hash(#) at the beginning of the 

statement or code. 

 

Let's understand the following example. 

 

# This is the print statement   

print("Hello Python")   

Here we have written comment over the print statement using the hash(#). It will not affect 

our print statement. 

Docstring in Python 

 Python has the documentation strings (or docstrings) feature. It gives programmers 

an easy way of adding quick notes with every Python module, function, class, and 

method. 

 You can define a docstring by adding it as a string constant. It must be the first 

statement in the object‟s (module, function, class, and method) definition. 

 The docstring has a much wider scope than a Python comment. Hence, it should 

describe what the function does, not how. Also, it is a good practice for all functions 

of a program to have a docstring. 

 The strings defined using triple-quotation mark are docstring in Python. However, it 

might appear to you as a regular comment 

Let's understand the following example. 

''' 

hello good morning 

welcome to python 

''' 

print("Doc Sting") 

“”” 

hello good morning 

welcome to python 

“”” 

print("Doc Sting") 

 

 



V RajaSekhar              CSE Dept        8 

Identifiers: 

 A name in Python program is called identifier. 

 It can be class name or function name or module name or variable name 

 The following rules we have to follow while creating an didentifiers 

1. Alphabet Symbols (Either Upper case OR Lower case) 

2. If Identifier is start with Underscore (_) then it indicates it is private. 

3. Identifier should not start with Digits. 

4. Identifiers are case sensitive. 

5. We cannot use reserved words as identifiers 

 Eg: def=10  

6. There is no length limit for Python identifiers. But not recommended to use too lengthy  

identifiers. 

7. Dollor ($) Symbol is not allowed in Python. 

 The following are Examples 

 myVar 

 var_3 

 cse_ds 

 

Reserved Words 

 In Python some words are reserved to represent some meaning or functionality. Such 

type of words are called Reserved words. 

 We cannot use a keyword as a variable name, function name or any other identifier. 

They are used to define the syntax and structure of the Python language. 

 In Python, keywords are case sensitive. 

 There are 33 keywords in Python 3.7. This number can vary slightly over the course 

of time. 

 All the keywords except True, False and None are in lowercase and they must be 

written as they are. The list of all the keywords is given below. 

False await else import pass 

None break except in raise 

True class finally is return 

and continue for lambda try 

as def from nonlocal while 

assert del global not with 

async elif If or yield 

 

Data Types or Objects 

 Python is an object-oriented programming language, and in Python everything is an 

object. 

 Objects are also called as Data structures. 

 All the Data types in python are also called as Data types 



V RajaSekhar              CSE Dept        9 

 Data Type represents the type of data present inside a variable. 

 In Python we are not required to specify the type explicitly. Based on value 

provided,the type will be assigned automatically.Hence Python is Dynamically 

Typed Language. 

Python contains the following inbuilt data types are categorized as follows  

 Fundamental or Build-in Data types or Data Structures 

 Composite Data Types or Data Structures 

 

Object Type Description Example 

Fundamental or Build-in Data types or Data Structures 

1. int We can use to represent the whole/integral 

numbers 

26,10,-12,-26 

2. float We can use to represent the decimal/floating 

point numbers 

26.6,-26.2 

3. complex We can use to represent the complex numbers 26+26j 

4. bool We can use to represent the logical values(Only 

allowed values are True and False) 

True,False 

5. str To represent sequence of Characters “MREC “,”Raj” 

Composite Data Types or Data Structures 

6. range To represent a range of values r=range(26) 

r1=range(1,26) 

r2=range(1,2,3) 

7. list To represent an ordered collection of objects L1=[1,2,3,4,5,] 

8. tuple To represent an ordered collections of objects t=(1,2,3,4,5) 

9. set To represent an unordered collection of unique 

objects 

S={1,2,3,4,5} 

10. dict To represent a group of key value pairs d={1:'Raj',2:'Sekh

ar'} 

11. None None means Nothing or No value associated. a=None 

Example: 

 



V RajaSekhar              CSE Dept        10 

Python contains several inbuilt functions as follows: 

1.type() : to check the type of variable 

2. id(): to get address of object 

3. print(): to print the value 

Example: 

>>> a=10 

>>> type(a) 

<class 'int'> 

>>> id(a) 

2141527304784 

>>> print(a) 

10 

Fundamental or Build-in Data types or Data Structures 

 

1. int data type:  

 We can use int data type to represent whole numbers (integral values) 

Eg: a=10 

 type(a) #int 

We can represent int values in the following ways 

1. Decimal form 

2. Binary form 

3. Octal form 

4. Hexa decimal form 

 

1. Decimal form(base-10): 

It is the default number system in Python 

The allowed digits are: 0 to 9 

Eg: a =10 

2. Binary form(Base-2): 

The allowed digits are : 0 & 1 

Literal value should be prefixed with 0b or 0B 

Eg: a = 0B1111 

 a =0B123 

 a=b111 

3. Octal Form(Base-8): 

The allowed digits are : 0 to 7 

Literal value should be prefixed with 0o or 0O 

Eg: a=0o123 

 a=0o786 



V RajaSekhar              CSE Dept        11 

4. Hexa Decimal Form(Base-16): 

The allowed digits are : 0 to 9, a-f (both lower and upper cases are allowed) 

Literal value should be prefixed with 0x or 0X 

Eg: 

 a =0XFACE 

 a=0XBeef 

 a =0XBeer 

 

Example: 

>>> a=10 

>>> b=0B0101 

>>> c=0o121 

>>> d=0xabc 

>>> print(a) 

10 

>>> print(b) 

5 

>>> print(c) 

81 

>>> print(d) 

2748 

Base Conversions 

Python provide the following in-built functions for base conversions 

1.bin(): 

We can use bin() to convert from any base to binary 

Eg: 

>>> bin(5)  

 '0b101'  

>>> bin(0o11)  

 '0b1001'  

 >>> bin(0X10)  

 '0b10000'  

2. oct(): 

We can use oct() to convert from any base to octal 

Eg: 

>>> oct(10)  

 '0o12'  

 >>> oct(0B1111)  

 '0o17'  



V RajaSekhar              CSE Dept        12 

 >>> oct(0X123)  

 '0o443'  

3. hex(): 

We can use hex() to convert from any base to hexa decimal 

Eg: 

 >>> hex(100)  

 '0x64'  

 >>> hex(0B111111)  

 '0x3f'  

 >>> hex(0o12345)  

 '0x14e5' 

 

2. float data type: 

We can use float data type to represent floating point values (decimal values) 

Eg: f=1.234 

 type(f) float 

We can also represent floating point values by using exponential form (scientific notation) 

Eg: f=1.2e3 

 print(f) 1200.0  

instead of 'e' we can use 'E' 

 The main advantage of exponential form is we can represent big values in less 

memory. 

 We can represent int values in decimal, binary, octal and hexa decimal forms. But 

we can represent float values only by using decimal form. 

Eg: 

 >>> f=0B11.01  

 File "<stdin>", line 1  

 f=0B11.01 

SyntaxError: invalid syntax  

  

 >>> f=0o123.456  

 SyntaxError: invalid syntax  

 

 >>> f=0X123.456  

 SyntaxError: invalid syntax 

 

3. Complex Data Type: 

A complex number is of the form 



V RajaSekhar              CSE Dept        13 

 
a and b contain intergers or floating point values 

 Eg: 

 6+3j 

 9+9.5j 

 0.5+0.9j 

In the real part if we use int value or we can specify that either by decimal,octal,binary  

or hexa decimal form. But imaginary part should be specified only by using decimal form. 

>>> a=0B011+4j  

>>> a  

 (3+4j)  

 >>> a=3+0B011j  

 SyntaxError: invalid syntax  

Even we can perform operations on complex type values. 

 >>> a=9+2.5j  

 >>> b=4+3.9j  

 >>>print(a+b)  

(13+6.4j)  

>>> a=(20+5j)  

>>> type(a)  

 <class 'complex'> 

 Complex data type has some inbuilt attributes to retrieve the real part and  

imaginary part 

c=15.4+6.6j 

c.real==>15.4 

c.imag==>6.6 

 We can use complex type generally in scientific Applications and electrical 

engineering Applications 

 

4. bool data type: 

 We can use this data type to represent boolean values. 

 The only allowed values for this data type are:True and False 

 Internally Python represents True as 1 and False as 0 

b=True 

type(b) =>bool 

 



V RajaSekhar              CSE Dept        14 

Eg: 

a=20 

b=30 

c=a<b 

print(c)==>True 

True+True==>2 

True-False==>1 

 

5. str type: 

 str represents String data type. 

 A String is a sequence of characters enclosed within single quotes or double quotes. 

s1='MREC' 

s1="MREC" 

 By using single quotes or double quotes we cannot represent multi line string literals. 

s1="MREC DS" 

 For this requirement we should go for triple single quotes(''') or triple double 

quotes(""") 

s1='''MREC 

 DS''' 

s1="""MREC 

 DS""" 

 We can also use triple quotes to use single quote or double quote in our String. 

>>> s1='''"This is mrec"''' 

>>> s1 

'"This is mrec"' 

 We can embed one string in another string 

>>> s1='''This "Python Programming Session" for DS Students''' 

>>> s1 

'This "Python Programming Session" for DS Students' 

 

Slicing of Strings: 

 slice means a piece 

 [ ] operator is called slice operator,which can be used to retrieve parts of String. 

 In Python Strings follows zero based index. 

 The index can be either +ve or -ve. 

 +ve index means forward direction from Left to Right 

 -ve index means backward direction from Right to Left 

Eg: 

-7 -6 -5 -4 -3 -2 -1 



V RajaSekhar              CSE Dept        15 

 

 

 

>>> s="MREC DS" 

>>> s[0] 

'M' 

>>> s[-7] 

'M' 

>>> s[3] 

'C' 

>>> s[-4] 

'C' 

>>> s[-10] 

Traceback (most recent call last): 

  File "<stdin>", line 1, in <module> 

IndexError: string index out of range 

>>> s[50] 

Traceback (most recent call last): 

  File "<stdin>", line 1, in <module> 

IndexError: string index out of range 

 

>>> s[1:4] 

'REC' 

>>> s[0:4] 

'MREC' 

>>> s[0:] 

'MREC DS' 

>>> s[:4] 

'MREC' 

>>> s[:] 

'MREC DS' 

>>> len(s) 

7 

Type Casting in Python 

We can convert one type value to another type. This conversion is called Typecasting or  

Type conversion. 

The following are various inbuilt functions for type casting. 

1. int() 

2. float() 

M R E C   D S 

0 1 2 3 4 5 6 



V RajaSekhar              CSE Dept        16 

3. complex() 

4. bool() 

5. str() 

1.int(): 

 We can use this function to convert values from other types to int Type. 

 We can convert from any type to int except complex type. 

 we want to convert str type to int type, compulsary str should contain only integral 

value and should be specified in base-10 

Eg: 

1) >>> int(13.87)  

2) 13  

4) >>> int(True)  

5) 1  

6) >>> int(False)  

7) 0  

8) >>> int("19")  

10) 19  

11) >>> int(10+5j)  

12) TypeError: can't convert complex to int 

13) >>> int("10.5")  

14) ValueError: invalid literal for int() with base 10: '10.5'  

15) >>> int("ten")  

16) ValueError: invalid literal for int() with base 10: 'ten'  

17) >>> int("0B1111")  

18) ValueError: invalid literal for int() with base 10: '0B1111' 

 

2. float(): 

 We can use float() function to convert other type values to float type. 

 We can convert any type value to float type except complex type. 

 Whenever we are trying to convert str type to float type compulsary str should be  

either integral or floating point literal and should be specified only in base-10. 

Eg: 

1) >>> float(26)  

2) 26.0  

3) >>> float(True)  

4) 1.0  

5) >>> float(False)  

6) 0.0  

7) >>> float("26")  

8) 26.0  



V RajaSekhar              CSE Dept        17 

9) >>> float("26.5")  

10) 26.5  

11) >>> float(26+5j)  

12) TypeError: can't convert complex to float  

13) >>> float("ten")  

14) ValueError: could not convert string to float: 'ten'  

15) >>> float("0B1011")  

16) ValueError: could not convert string to float: '0B1011'  

 

3.complex(): 

 We can use complex() function to convert other types to complex type. 

 We can use this function to convert x into complex number with real part x and 

imaginary  

 We can use this method to convert x and y into complex number such that x will be 

real part and y will be imaginary part. 

 

Eg:  

1) complex(26) 

 26+0j  

2) complex(26.26) 

      26.26+0j  

3) complex(True) 

       1+0j  

4) complex(False) 

         0j  

5) complex("26") 

      26+0j  

6) complex("26.26") 

      26.26+0j  

7) complex("MREC")  

ValueError: complex() arg is a malformed string 

8)complex(26,26) 

      26+26j 

 9)complex(True,False) 

     1+0j 

 

4. bool(): 

 We can use this function to convert other type values to bool type. 

Eg:  

1) bool(0) 



V RajaSekhar              CSE Dept        18 

False  

2) bool(1) 

True  

3) bool(26) 

True  

4) bool(26.26) 

True  

5) bool(0.26) 

True  

6) bool(0.0) 

False  

7) bool(26-26j) 

True  

8) bool(0+26.26j) 

True  

9) bool(0+0j) 

False  

10) bool("True") 

True  

11) bool("False") 

True  

12) bool("") 

False 

5. str(): 

We can use this method to convert other type values to str type 

Eg: 

1) >>> str(26)  

'26'  

3) >>> str(26.26)  

 '26.26'  

5) >>> str(26+5j)  

'(26+5j)'  

7) >>> str(True)  

'True' 

 8)>>>str(False) 

  „False‟ 

 

 

 



V RajaSekhar              CSE Dept        19 

Operators in Python 

 

An operator is a symbol that tells the compiler to perform certain mathematical or logical  

Manipulations. Operators are used in program to manipulate data and variables. 

Python language supports the following types of operators. 

1. Arithmetic Operators 

2. Relational Operators or Comparison Operators 

3. Logical operators 

4. Bitwise operators 

5. Assignment operators 

6. Special operators 

 

1. Arithmetic Operators:  

Arithmetic operators are used with numeric values to perform common mathematical 

operations: 

 / operator always performs floating point arithmetic. Hence it will always 

returns float value. 

 Floor division (//) can perform both floating point and integral arithmetic. If 

arguments are int type then result is int type. If at least one argument is float 

type then result is float type. 

Assume variable „x‟ holds 5 and variable „y‟ holds 2, then: 

Operator Name Example 

+ Addition - Adds values on either side of the operator x + y=7 

- 
Subtraction - Subtracts right hand operand from left hand 
operand 

x – y=3 

* 
Multiplication - Multiplies values on either side of the 
operator 

x * y=10 

/ 
Division - Divides left hand operand by right hand 
operand 

x / y=2.5 

% 
Modulus - Divides left hand operand by right hand 
operand and returns remainder 

x % y=1 

** 
Exponent - Performs exponential (power) calculation on 

operators 
x ** y=25 

// 
Floor Division - The division of operands where the result 
is the quotient in which the digits after the decimal point 
are removed. 

x // y=2 

Eg: 

>>> x=5 

>>> y=2 

>>> print('x+y=',x+y) 

x+y= 7 



V RajaSekhar              CSE Dept        20 

>>> print('x-y=',x-y) 

x-y= 3 

>>> print('x*y=',x*y) 

x*y= 10 

>>> print('x/y=',x/y) 

x/y= 2.5 

>>> print('x%y=',x%y) 

x%y= 1 

>>> print('x**y=',x**y) 

x**y= 25 

>>> print('x//y=',x//y) 

x//y= 2 

 

2. Relational Operators or Comparison Operators 

Comparison operators are used to compare two values: 

Assume variable „x‟ holds 5 and variable „y‟ holds 2, then: 

Operator Name Example 

== 
Checks if the value of two operands are equal or not, if yes then 
condition becomes true 

x == y=False 

!= 
Checks if the value of two operands are equal or not, if values 
are not equal then condition becomes true. 

x != y=True 

> 
Checks if the value of left operand is greater than the value of 
right operand, if yes then condition becomes true. 

x > y=True 

< 
Checks if the value of left operand is less than the value of right 
operand, if yes then condition becomes true. 

x < y=False 

>= 
Checks if the value of left operand is greater than or equal to the 
value of right operand, if yes then condition becomes true. 

x >= y=True 

<= 
Checks if the value of left operand is less than or equal to the 
value of right operand, if yes then condition becomes true. 

x <= y=False 

Eg: 

>>> x=5 

>>> y=2 

>>> print('x==y=',x==y) 

x==y= False 

>>> print('x!=y=',x!=y) 

x!=y= True 

>>> print('x>y=',x>y) 

x>y= True 



V RajaSekhar              CSE Dept        21 

>>> print('x<y=',x<y) 

x<y= False 

>>> print('x>=y=',x>=y) 

x>=y= True 

>>> print('x<=y=',x<=y) 

x<=y= False 

 

3. Logical operators: 

Logical operators are used to combine conditional statements: 

X Y X AND Y X OR Y NOT X 

False False False False True 

False True False True True 

Ture False False True False 

True True True True False 

Assume variable „x‟ holds 5 and variable „y‟ holds 2, then: 

Operator Description Example 

and Returns True if both statements are true x < 5 and  x < 10 

or Returns True if one of the statements is true x < 5 or x < 4 

not Reverse the result, returns False if the result is true not(x < 5 and x < 10) 

 

Eg: 

>>> x=5 

>>> y=2 

>>> x and y 

2 

>>> print(x>=5 and y<=5) 

True 

>>> print(x>=5 or y<=5) 

True 

>>> print(not x>=5) 

False 

4. Bitwise operators: 

 Bitwise operator works on bits and performs bit by bit operation. 

 We can apply these operators bitwise on int and boolean types. 

 By mistake if we are trying to apply for any other type then we will get Error. 

 

 



V RajaSekhar              CSE Dept        22 

 

Truth table for bit wise operation                                                      Bit wise operators 

x Y x|y x & y x ^ y 

 

Operator_symbol Operator_name 

0 0 0 0 0 & Bitwise_AND 

0 1 1 0 1 | Bitwise OR 

1 0 1 0 1 ~ Bitwise_NOT 

1 1 1 1 0 ^ XOR 

 

<< Left Shift 

>> Right Shift 

 

Operator Name Description 

&  AND Sets each bit to 1 if both bits are 1 

| OR Sets each bit to 1 if one of two bits is 1 

 ^ XOR Sets each bit to 1 if only one of two bits is 1 

~  NOT Inverts all the bits 

<< Zero fill left 
shift 

Shift left by pushing zeros in from the right and let the leftmost bits 
fall off 

>> Signed right 
shift 

Shift right by pushing copies of the leftmost bit in from the left, and let 
the rightmost bits fall off 

 

Eg: 

>>> x=5 

>>> y=2 

>>> print('x & y=',x&y) 

x & y= 0 

>>> print('x | y=',x|y) 

x | y= 7 

>>> print('X ^ y=',x^y) 

X ^ y= 7 

>>> print('~x=',~x) 

~x= -6 

>>> print('x>>1=',x>>1) 

x>>1= 2 

>>> print('y<<1=',y<<1) 

y<<1= 4 

 

6.Assignment operators: 

Assignment operators are used to assign values to variables: 



V RajaSekhar              CSE Dept        23 

Operator Example Equal to  

= x = 5 x = 5 

+= x += 3 x = x + 3 

-= x -= 3 x = x - 3 

*= x *= 3 x = x * 3 

/= x /= 3 x = x / 3 

%= x %= 3 x = x % 3 

//= x //= 3 x = x // 3 

**= x **= 3 x = x ** 3 

&= x &= 3 x = x & 3 

|= x |= 3 x = x | 3 

^= x ^= 3 x = x ^ 3 

>>= x >>= 3 x = x >> 3 

<<= x <<= 3 x = x << 3 

Eg: 

>>> x=5 

>>> x+=3 

>>> print('x=x+3=',x) 

x=x+3= 8 

>>> x-=3 

>>> print('x=x-3=',x) 

x=x-3= 5 

>>> x*=3 

>>> print('x=x*3=',x) 

x=x*3= 15 

>>> x/=3 

>>> print('x=x/3=',x) 

x=x/3= 5.0 

>>> x%=3 

>>> print('x=x%3=',x) 

x=x%3= 2.0 

>>> x//=3 

>>> print('x=x//3=',x) 

x=x//3= 0.0 

>>> x**=3 

>>> print('x=x**3=',x) 

x=x**3= 0.0 

>>> x=5 

>>> x&=3 

>>> print('x=x&3=',x) 

x=x&3= 1 

>>> x|=3 

>>> print('x=x|3=',x) 

x=x|3= 3 

>>> x^=3 

>>> print('x=x^3=',x) 

x=x^3= 0 

>>> x>>=3 

>>> print('x=x>>3=',x) 

x=x>>3= 0 

>>> x<<=3 

>>> print('x=x<<3=',x) 

x=x<<3=0

 

5. Special operators: 

Python defines the following 2 special operators 

1. Identity Operators 

2. Membership operators 



V RajaSekhar              CSE Dept        24 

 

 

1. Identity Operators 

 Identity Operators in Python are used to compare the memory location of two 

objects. The two identity operators used in Python are (is, is not). 

 

 Operator is: It returns true if two variables point the same object and false 

otherwise 

 Operator is not: It returns false if two variables point the same object and true 

otherwise2 identity operators are available. 

Operator Description Example 

is  Returns True if both variables are the same object x is y 

is not Returns True if both variables are not the same object x is not y 

 

Eg: 

>>> x=5 

>>> y=5 

>>> print(x is y) 

True 

>>> print(id(x)) 

2265011481008 

>>> print(id(y)) 

2265011481008 

>>> print(x is not y) 

False 

2. Membership Operators 

 These operators test for membership in a sequence such as lists, strings or 

tuples. There are two membership operators that are used in Python. (in, not 

in). It gives the result based on the variable present in specified sequence or 

string 

 For example here we check whether the value of x=4 and value of y=8 is 

available in list or not, by using in and not in operators. 

Operator Description Example 

in  Returns True if a sequence with the specified value is 
present in the object 

x in y 

not in Returns True if a sequence with the specified value is not 

present in the object 

x not in y 

 



V RajaSekhar              CSE Dept        25 

Eg: 

>>> x="MREC CSE-DS Dept" 

>>> print('M' in x) 

True 

>>> print('-' in x) 

True 

>>> print('DS' in x) 

True 

>>> print('1' not in x) 

True 

>>> print('M' not in x) 

False 

Precedence and Associativity of Operators in Python 

 When an expression has more than one operator, then it is the relative priorities of 

the operators with respect to each other that determine the order in which the 

expression is evaluated. 

Operator Precedence: This is used in an expression with more than one operator with 

different precedence to determine which operation to perform first. 

Eg:10+20*30 

10 + 20 * 30 is calculated as 10 + (20 * 30) and not as (10 + 20) * 30 

 

 
Example: 

>>> exp=10+20*30 

>>> print(exp) 

610 



V RajaSekhar              CSE Dept        26 

Operator Associativity: 

 When two operators have the same precedence, associativity helps to determine the 

order of operations. 

 Associativity is the order in which an expression is evaluated that has multiple 

operators of the same precedence. Almost all the operators have left-to-right 

associativity. 

 For example, multiplication and floor division have the same precedence. Hence, if 

both of them are present in an expression, the left one is evaluated first. 

Example: „*‟ and „/‟ have the same precedence and their associativity is Left to Right, so the 

expression “100 / 10 * 10” is treated as “(100 / 10) * 10”. 

 
Example: 

>>> exp=100/10*10 

>>> print(exp) 

100.0 

 Please see the following precedence and associativity table for reference. This table 

lists all operators from the highest precedence to the lowest precedence. 

Operator Description   Associativity 

( ) Parentheses   left-to-right 

** Exponent  right-to-left 

*  /  % Multiplication/division/modulus left-to-right 

+  – Addition/subtraction left-to-right 

<<  >> Bitwise shift left, Bitwise shift right left-to-right 

<  <=  

>  >= 

Relational less than/less than or equal to  

Relational greater than/greater  than or equal to 

left-to-right 

==  != Relational is equal to/is not equal to left-to-right 

is,  is not 

in, not in 

Identity 

Membership operators 

left-to-right 



V RajaSekhar              CSE Dept        27 

& Bitwise AND left-to-right 

^ Bitwise exclusive OR left-to-right 

| Bitwise inclusive OR left-to-right 

Not Logical NOT right-to-left 

And Logical AND left-to-right 

Or Logical OR left-to-right 

=  
+=  -=  

*=  /=  
%=  &=  
^=  |=  

<<=  >>= 

Assignment  
Addition/subtraction assignment  

Multiplication/division assignment  
Modulus/bitwise AND assignment  
Bitwise exclusive/inclusive OR assignment  

Bitwise shift left/right assignment 

right-to-left 

 

Conditionals and Loop Structures 

A control structure directs the order of execution of the statements in program.The Control 

statements as categorized as follows. 

 

Conditional statement 

 Conditional statements will decide the execution of a block of code based on the 

expression. 

 The conditional statements return either True or False. 

 A Program is just a series of instructions to the computer, But the real strength of  

Programming isn‟t just executing one instruction after another. Based on how the 

expressions evaluate, the program can decide to skip instructions, repeat them, or 

choose one of several instructions to run. In fact, you almost never want your 

programs to start from the first line of code and simply execute every line, straight to 

the end. Flow control statements can decide which Python instructions to execute 

under which conditions. 

 Python supports four types of conditional statements, 



V RajaSekhar              CSE Dept        28 

1. Simple if or if statement 

2. if – else Statement 

3. if else if (elif) Statement 

4. nested if statement 

Indentation:Python relies on indentation (whitespace at the beginning of a line) to define 

scope in the code. Other programming languages often use curly-brackets for this purpose. 

1) Simple if or if statement  

if condition : statement 

 or 

if condition : 

 statement-1 

 statement-2 

 statement-3 

If condition is true then statements will be executed 

Example: 

>>> a=10 

>>> b=5 

>>> if(a>b): 

 print("a is big") 

 

a is big 

>>> if a>b: 

 print("a  is big") 

a is big 

2) if else: 

if condition : 

 Statements-1 

else : 

 Statements-2 

if condition is true then  Statements-1 will be executed otherwise  Statements-2 will be 

executed. 

Example: 

>>> a=10 

>>> b=25 

>>> if(a>b): 

 print("a is big") 

else: 

 print("b is big") 



V RajaSekhar              CSE Dept        29 

 

b is big 

3) if elif else: 

 

Syntax: 

if condition1: 

 Statements-1 

elif condition2: 

Statements -2 

elif condition3: 

Statements -3 

elif condition4: 

Statements -4 

 ... 

else: 

 Default Action 

Based condition the corresponding action will be executed. 

 

Example: 

>>> Option=int(input("Enter a value b/w(1-5)")) 

Enter a value b/w(1-5)2 

>>> if(Option==1): 

 print("you entered one") 

elif(Option==2): 

 print("You entered Two") 

elif(Option==3): 

 print("You entered Three") 

elif(Option==4): 

 print("You entered Four") 

elif(Option==5): 

 print("You entered Five") 

else: 

 print("Enter Value b/w (1-5) only") 

 

You entered Two 

 

4. nested if statement 

We can use if statements inside if statements, this is called nested if statements. 

Synatx: 



V RajaSekhar              CSE Dept        30 

if (condition1): 

   # Executes when condition1 is true 

   if (condition2):  

      # Executes when condition2 is true 

   # if Block is end here 

# if Block is end here 

Example: 

>>> username=input("enter user name:") 

enter user name:Raj 

>>> pwd=input("Enter password") 

Enter passwordRaj 

>>> if(username=="Raj"): 

 if(pwd=="Raj"): 

  print("Login successful:") 

 else: 

  print("Invalid pwd") 

else: 

 print("Invalid Username") 

 

Login successful: 

Iterative Statements 

If we want to execute a group of statements multiple times then we should go for Iterative 

statements. 

Python supports 2 types of iterative statements. 

1. for loop 

2. while loop 

1) for loop: 

If we want to execute some action for every element present in some sequence(it may be  

string or collection)then we should go for for loop. 

Syntax: 

for x in sequence : 

 body 

Where sequence can be string or any collection. 

Body will be executed for every element present in the sequence. 

Eg 1: To print characters present in the given string 

>>> s="MREC" 

>>> for r in s: 

 print(r) 

M 



V RajaSekhar              CSE Dept        31 

R 

E 

C 

Eg2: To print characters present in string index wise: 

>>> i=0 

>>> for x in s: 

 print('The character present at ',i,'index:',x) 

 i+=1 

 

The character present at  0 index: M 

The character present at  1 index: R 

The character present at  2 index: E 

The character present at  3 index: C 

Eg3: To print Sequence of values: 

>>> for i in (1,2,3,4,5): 

 print(i) 

 

1 

2 

3 

4 

5 

2) while loop: 

If we want to execute a group of statements iteratively until some condition false,then we  

should go for while loop. 

Syntax: 

  while condition : 

 body 

  

 Eg: To print numbers from 1 to 5 by using while loop 

>>> i=1 

>>> while(i<=5): 

 print(i) 

 i+=1 

1 

2 

3 

4 

5 



V RajaSekhar              CSE Dept        32 

Eg: To display the sum of first n numbers 

n=int(input("Enter n value:")) 

sum=0 

i=1 

while i<=n: 

    sum=sum+i 

    i=i+1 

print("sum of ",n," elements are=",sum) 

OutPut: 

  Enter n value:5 

  sum of  5  elements are= 15 

Nested Loops: 

 Sometimes we can take a loop inside another loop,which are also known as nested 

loops 

 A nested loop is a loop inside a loop. 

 The "inner loop" will be executed one time for each iteration of the "outer loop": 

Syntax: 

 while expression: 

     while expression: 

      statement(s) 

 statement(s) 

Eg1: 

r=1 

while(r<=3): 

    c=1 

    while(c<=5): 

        print("r=",r,"c=",c) 

        c=c+1 

    print('\n') 

    r=r+1 

OutPut: 

r= 1 c= 1 r=2   c=1 r=3   c=1 

r= 1 c= 2 r=2   c=2 r=3   c=2 

r= 1 c= 3 r=2   c=3 r=3   c=3 

r= 1 c= 4 r=2   c=4 r=3   c=4 

r= 1 c= 5 r=2   c=5 r=3   c=5 

Eg2: 

for r in (1,2,3): 

    for c in (1,2,3,4,5): 



V RajaSekhar              CSE Dept        33 

        print('r=',r,'c=',c) 

    print('\n') 

OutPut: 

r= 1 c= 1 r=2   c=1 r=3   c=1 

r= 1 c= 2 r=2   c=2 r=3   c=2 

r= 1 c= 3 r=2   c=3 r=3   c=3 

r= 1 c= 4 r=2   c=4 r=3   c=4 

r= 1 c= 5 r=2   c=5 r=3   c=5 

Transfer Statements 

 

1) break: 

 We can use break statement inside loops to break loop execution based on some  

condition. 

Eg: 

for r in (1,2,3,4,5): 

    if(r==3): 

        print("Break the loop") 

        break 

    print(r) 

 

OutPut: 

1 

2 

Break the loop 

2) continue: 

 We can use continue statement to skip current iteration and continue next iteration. 

Eg 1: To print even numbers in the range 1 to 10 

for r in (1,2,3,4,5,6,7,8,9,10): 

    if(r%2!=0): 

        continue 

    print(r) 

OutPut: 

2 

4 

6 

8 

10 

 

 



V RajaSekhar              CSE Dept        34 

Composite Data Types or Data Structures 

 The following are different Composite data type in python 

6. range Data Type: 

 range Data Type represents a sequence of numbers. The elements present in range 

Data type are not modifiable. i.e range Data type is  immutable 

 We can access elements present in the range Data Type by using index. 

Eg: 

1. range(5)generate numbers from 0 to 4 

Eg: 

r=range(5) 

for i in r :  

print(i) 

OutPut: 0 1 2 3 4 5 

2. range(5,10)generate numbers from 5 to 9 

r = range(5,10) 

for i in r :  

print(i)  

OutPut:5 6 7 8 9 

3. range(1,10,2)2 means increment value 

r = range(1,10,2) 

for i in r :  

print(i)  

OutPut: 1 3 5 7 9 

 

4. r=range(0,5) 

r[0]==>0 

r[15]==>IndexError: range object index out of range 

We cannot modify the values of range data type 

7.list data type: 

 If we want to represent a group of values as a single entity where insertion order 

required to preserve and duplicates are allowed then we should go for list data type. 

 An ordered, mutable, heterogeneous collection of elements is nothing but list, where 

Duplicates also allowed. 

 insertion order is preserved 

 heterogeneous objects are allowed 

 duplicates are allowed 

 Growable in nature 

 values should be enclosed within square brackets. 

1. Eg: 



V RajaSekhar              CSE Dept        35 

 list=[26,26.5,'Raj',True]  

 print(list)  

output [26,26.5,'Raj',True]  

2. Eg: 

 list=[10,20,30,40]  

 >>> list[0]  

 10  

 >>> list[-1]  

 40  

 >>> list[1:3]  

 [20, 30]  

 >>> list[0]=100  

 >>> print(list)  

 ...  

 100  

40  

 30 

 40  

 list is growable in nature. i.e based on our requirement we can increase or decrease 

the size. 

>>> list=[10,20,30]  

>>> list.append("raj")  

>>> list  

[10, 20, 30, „raj‟]  

>>> list.remove(20)  

 >>> list  

 [10, 30, „raj‟]  

 >>> list1=list*2  

>>> list1  

 [10, 30, 'raj', 10, 30, 'raj']  

 

Creating list by using range data type: 

 

 We can create a list of values with range data type 

Eg: 

>>> l = list(range(5))  

>>>print(l)  

[0, 1, 2, 3, 4] 

 



V RajaSekhar              CSE Dept        36 

8. tuple data type: 

 tuple data type is exactly same as list data type except that it is immutable.i.e we 

cannot chage values. 

 Tuple elements can be represented within parenthesis. 

 tuple is the read only version of list 

Eg: 

>>> t1=(1,2,3,4)  

 >>>type(t)  

 <class 'tuple'>  

 >>>t1[0]=26  

 TypeError: 'tuple' object does not support item assignment  

 >>> t.append("Raj")  

 AttributeError: 'tuple' object has no attribute 'append'  

 >>> t.remove(2)  

 AttributeError: 'tuple' object has no attribute 'remove'  

 

9. set Data Type: 

 If we want to represent a group of values without duplicates where order is not 

important then we should go for set Data Type 

 insertion order is not preserved 

 duplicates are not allowed 

 heterogeneous objects are allowed 

 index concept is not applicable 

 It is mutable collection 

 Growable in nature, based on our requirement we can increase or decrease 

the size 

Eg: 

>>> s={1,2,"raj",True,1,2} 

>>> s 

{1, 2, 'raj'} 

>>> s.remove(2) 

>>> s 

{1, 'raj'} 

>>> s.add(10) 

>>> s 

{1, 10, 'raj'} 

>>> s.add("MREC") 

>>> s 

{1, 10, 'raj', 'MREC'} 



V RajaSekhar              CSE Dept        37 

10.dict Data Type: 

 If we want to represent a group of values as key-value pairs then we should go for 

dict data type. 

 Duplicate keys are not allowed but values can be duplicated. If we are trying to insert 

an entry with duplicate key then old value will be replaced with new value. 

 

Eg: 

>>> d={1:"one",2:"Two",3:"Three"} 

>>> d[1] 

'one' 

>>> d 

{1: 'one', 2: 'Two', 3: 'Three'} 

>>> d[4]="Four" 

>>> d 

{1: 'one', 2: 'Two', 3: 'Three', 4: 'Four'} 

>>> d[5]="error" 

>>> d 

{1: 'one', 2: 'Two', 3: 'Three', 4: 'Four', 5: 'error'} 

>>> d[5]="Five" 

>>> d 

{1: 'one', 2: 'Two', 3: 'Three', 4: 'Four', 5: 'Five'} 

11. None Datatype: 

 The None Datatype is used to define the null value or no value, the none value 

means not 0, or False value, and it is a data it's own 

 None keyword is an object and is a data type of nonetype class 

 None datatype doesn‟t contain any value. 

 None keyword is used to define a null variable or object. 

 None keyword is immutable. 

 

Eg: 

Assume a=10, that means a is the reference variable pointing to 10 and if I take a=none 

then a is not looking to the object 10 

>>> a=10 

>>> type(a) 

<class 'int'> 

>>> a=None 

>>> type(a) 

<class 'NoneType'> 

 



V RajaSekhar              CSE Dept        1 

Python Programming 

MODULE - II 

Agenda: 

 Modules: Modules and Files 

 Namespaces 

 Importing Modules,  

 Importing Module Attributes,  

 Module Built-in Functions,  

 Packages,  

 Other Features of Modules 

 Files: File Objects,  

 File Built-in Function,  

 File Built-in Methods,  

 File Built-in Attributes,  

 Standard Files,  

 Command-line Arguments,  

 File System,  

 File Execution,  

 Persistent Storage Modules. 

 Exceptions: Exceptions in Python,  

 Detecting and Handling Exceptions,  

 Context Management,  

 Exceptions as Strings,  

 Raising Exceptions,  

 Assertions,  

 Standard Exceptions, 

 Creating Exceptions,  

 Why Exceptions,  

 Why Exceptions at All? 

  Exceptions and the sys Module. 

 

 

 

 

 



V RajaSekhar              CSE Dept        2 

Modules 

 

 Like many other programming languages, Python supports modularity. That is, you 

can break large code into smaller and more manageable pieces. And through 

modularity, Python supports code reuse.  

 We can import modules in Python into your programs and reuse the code therein as 

many times as you want. 

 Modules provide us with a way to share reusable functions. 

 

A module is simply a “Python file” which contains code we can reuse in 

multiple Python programs. A module may contain functions, classes, 

lists, etc. 
 

 Modules in Python can be of two types: 

1. Built-in Modules. 

2. User-defined Modules. 

1. Built in Modules in Python 

 One of the many superpowers of Python is that it comes with a ―rich standard 

library‖. This rich standard library contains lots of built-in modules. Hence, it 

provides a lot of reusable code. 

 In Python, modules are accessed by using the import statement 

 When our current file is needed to use the code which is already existed in other files 

then we can import that file (module). 

 When Python imports a module called module1 for example, the interpreter will first 

search for a built-in module called module1. If a built-in module is not found, the 

Python interpreter will then search for a file named module1.py in a list of directories 

that it receives from the sys.path variable. 

 We can import module in three different ways: 

1. import <module_name> 

2. from <module_name> import <method_name> 

3. from <module_name> import * 

1.import <module_name>:  

 This way of importing module will import all methods which are in that specified 

module. 

Eg: import math 

 Here this import statement will import all methods which are available in math 

module. We may use all methods or may use required methods as per business 

requirement. 



V RajaSekhar              CSE Dept        3 

2.From <module_name> import <method_name>: 

 This import statement will import a particular method from that module which is 

specified in the import statement. 

 We can‘t use other methods which are available in that module as we specified 

particular method name in the import statement. 

 The main advantage of this is we can access members directly without using module 

name. 

Eg:from <module_name>import <*> 

from math import factorial 

from math import* 

 

Finding members of module by using dir() function: 
 Python provides inbuilt function dir() to list out all members of current module or a  

Specified module. 

 dir() ===>To list out all members of current module 

 dir(moduleName)==>To list out all members of specified module 

1.Eg: 

>>> dir() 

['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__', '__package__', 

'__spec__'] 

 

2.Eg: 

>>> import math 

>>> dir(math) 

['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 

'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees', 'dist', 

'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 

'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'isqrt', 'lcm', 'ldexp', 'lgamma', 

'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'nextafter', 'perm', 'pi', 'pow', 'prod', 

'radians', 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc', 'ulp'] 

 

Some of Standard modules 

 Math module  

 Calendar module 

 

 

 

 

 



V RajaSekhar              CSE Dept        4 

Working with math module: 
 Python provides inbuilt module math. 

 This module defines several functions which can be used for mathematical 

operations. 

 Some main important functions are 

1. sqrt(x) 

2. ceil(x) 

3. floor(x) 

4. fabs(x) 

5. log(x) 

6. sin(x) 

7. tan(x) 

8.factorial(x) 

.... 

Eg: 

>>> from math import* 

>>> print(sqrt(5)) 

2.23606797749979 

>>> print(ceil(15.25)) 

16 

>>> print(floor(15.25)) 

15 

>>> print(fabs(-15.6)) 

15.6 

>>> print(fabs(15.6)) 

15.6 

>>> print(log(10.5)) 

2.3513752571634776 

>>> print(sin(1)) 

0.8414709848078965 

>>> print(tan(0)) 

0.0 

>>> print(factorial(5)) 

120 

 

Working with Calendar module: 
 Python defines an inbuilt module calendar which handles operations related to 

calendar. 



V RajaSekhar              CSE Dept        5 

 Calendar module allows output calendars like the program and provides additional 

useful functions related to the calendar.  

calendar.day_name:An array that represents the days of the week in the current locale. 

 

1. Displaying all week names one by one 

import calendar  

for i in calendar.day_name: 

 print(i) 

 

output: 

Monday 

Tuesday 

Wednesday 

Thursday 

Friday 

Saturday 

Sunday 

calendar.month_name: 

An array that represents the months of the year in the current locale. This follows normal 

convention of January being month number 1, so it has a length of 13 and month_name[0] 

is the empty string. 

>>> import calendar 

>>> for i in calendar.month_name: 

 print(i) 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

calendar.monthrange(year, month): Returns weekday of first day of the month and 

number of days in month, for the specified year and month. 

>>> import calendar 

>>> print(calendar.monthrange(2021,6)) 



V RajaSekhar              CSE Dept        6 

(1, 30) 

>>> print(calendar.monthrange(2021,7)) 

(3, 31) 

>>> print(calendar.monthrange(2022,1)) 

(5, 31) 

>>> print(calendar.monthrange(2021,1)) 

(4, 31)  

 

calendar.isleap(year): Returns True if year is a leap year, otherwise False. 

>>> import calendar 

>>> print(calendar.isleap(2020)) 

True 

>>> print(calendar.isleap(2021)) 

False 

calendar.leapdays(y1, y2): Returns the number of leap years in the range from y1 to y2 

(exclusive), where y1 and y2 are years. 

>>> import calendar 

>>> print(calendar.leapdays(2000,2020)) 

5 

calendar.weekday(year, month, day): Returns the day of the week (0 is Monday) for year 

(1970–…), month (1–12), day (1–31) 

>>> import calendar 

>>> print(calendar.weekday(2020,5,1)) 

4 

>>> print(calendar.weekday(2021,5,1)) 

5 

calendar.weekheader(n): Return a header containing abbreviated weekday names. n 

specifies the width in characters for one weekday 

 

>>> import calendar 

>>> print(calendar.weekheader(1)) 

M T W T F S S 

>>> print(calendar.weekheader(3)) 

Mon Tue Wed Thu Fri Sat Sun 

>>> print(calendar.weekheader(10)) 

  Monday    Tuesday   Wednesday   Thursday    Friday    Saturday    Sunday 

calendar. calendar(year, w, l, c):Returns a 3-column calendar for an entire year as a multi-

line string using the formatyear() of the TextCalendar class.   

This function shows the year, width of characters, no. of lines per week and column 

separations. 



V RajaSekhar              CSE Dept        7 

 

>>> import calendar 

>>> print(calendar.calendar(2021)) 

Output:prints 2021 full calendar  

 

1. User defined Modules. 

 Another superpower of Python is that it lets you take things in your own hands. 

  A python module can be defined as a python program file which contains a python 

code including python functions, class, or variables. In other words, we can say that 

our python code file saved with the extension (.py) is treated as the module. We may 

have a runnable code inside the python module. 

 Modules in Python provides us the flexibility to organize the code in a logical way. 

 To use the functionality of one module into another, we must have to import the 

specific module. 

 

Creating a Module: 

Shown below is a Python script containing the definition of sum() function. It is 

saved as calc.py. 

 

#calc.py  

def sum(x, y): 

    return x + y 

def sub(x, y): 

    return x - y 

def mul(x, y): 

    return x * y 

def di(x, y): 

    return x / y 

 

Importing a Module 

We can now import this module and execute the any functions which are there in calac.py 

module in the Python shell. 

>>> import calc 

>>> print(calc.sum(4,5)) 

9 

>>> print(calc.sub(4,5)) 

-1 

>>> print(calc.mul(4,5)) 

20 



V RajaSekhar              CSE Dept        8 

>>> from calc import * 

>>> print(sum(4,5)) 

9 

>>> print(sub(4,5)) 

-1 

>>> print(mul(4,5)) 

20 

 

 Every module, either built-in or custom made, is an object of a module class. 

Verify the type of different modules using the built-in type() function, as shown 

below. 

>>> import calc 

>>> type(calc) 

<class 'module'> 

>>> import math 

>>> type(math) 

<class 'module'> 

 

Renaming the Imported Module 

Use the as keyword to rename the imported module as shown below.- 

>>> import calc as c 

>>> import math as raj 

>>> import calc as c 

>>> import math as raj 

>>> print(c.sum(4,5)) 

9 

>>> print(raj.factorial(5)) 

120 

Namespaces 

 

 Generally speaking, a namespace is a naming system for making names unique to 

avoid ambiguity. 

  Everybody knows a namespacing system from daily life, i.e. the naming of people in 

firstname and familiy name (surname). 

 A namespace is a simple system to control the names in a program. It ensures that 

names are unique and won‘t lead to any conflict. 

 Some namespaces in Python: 

1. Local Namespace 

2. Global Namespace 



V RajaSekhar              CSE Dept        9 

3. Built-in Namespace 

Local Namespace: 
The Variables which are defined in the function are a local scope of the variable. These 

variables are defined in the function body. 

 

Global Namespace 
The Variable which can be read from anywhere in the program is known as a global scope. 

These variables can be accessed inside and outside the function. When we want to use the 

same variable in the rest of the program, we declare it as global. 

Eg: 

n=0#global namesapce 

def f1(): 

    n=1#local namespace 

    print("local variable n=",n) 

f1() 

print("Global variable n=",n) 

OutPut: 

  local variable n= 1 

Global variable n= 0 

 

Built-in Scope 
 If a Variable is not defined in local,or global scope, then python looks for it in the 

built-in scope. 

  In the Following Example, 1 from math module pi is imported, and the value of pi 

is not defined in global, local and enclosed.  

 Python then looks for the pi value in the built-in scope and prints the value. Hence 

the name which is already present in the built-in scope should not be used as an 

identifier. 

Eg: 

# Built-in Scope 

from math import pi 

# pi = 'Not defined in 

global pi' 

def f1(): 

    print('Not defined in f1() 

pi') 

def f2(): 

    print('Not defined in f2() 

pi') 

f1() 

f2() 

print('pi is Built-in 

scope',pi) 

OutPut: 

Not defined in f1() pi 

Not defined in f2() pi 

pi is Built-in scope 

3.141592653589793 



V RajaSekhar              CSE Dept        10 

 

Packages in Python 

 
 A Package is nothing but a collection of modules. It is also imported into programs. 

 In Package, several modules are present, which you can import in your code. 

 Packages are a way of structuring many packages and modules which helps in a well-

organized hierarchy of data set, making the directories and modules easy to access. 

 Just like there are different drives and folders in an OS to help us store files, similarly 

packages help us in storing other sub-packages and modules, so that it can be used by 

the user when necessary. 

 Similarly, as a directory can contain subdirectories and files, a Python package can 

have sub-packages and modules. 

 A directory must contain a file named __init__.py in order for Python to consider it 

as a package. This file can be left empty but we generally place the initialization code 

for that package in this file. 

 Any folder or directory contains __init__.py file,is considered as a Python 

package.This file can be empty. 

 As we discussed, a package may hold other Python packages and modules. But what 

distinguishes a package from a regular directory? Well, a Python package must have 

an __init__.py file in the directory. 

 You may leave it empty, or you may store initialization code in it. But if your 

directory does not have an __init__.py file, it isn‘t a package; it is just a directory 

with a bunch of Python scripts. Leaving __init__.py empty is indeed good practice. 

 

Example: Suppose we are developing a game. One possible organization of packages and 

modules could be as shown in the figure below. 



V RajaSekhar              CSE Dept        11 

 
The Following Steps to be follow. 

Step1: Create a folder or package 

Step2: Inside the Folder create a sub folder or package 

Step3: Inside the package we have to create _init_.py which indicate its  a package 

Step4: After that we can create some modules based on requirement 

Step5: After that we have to create main module in package folder by importing  the created 

modules in sub package. 

 

Eg 1: 

F:\> 

 |-test.py 

 |-python_package 

 |-First.py 

 |-Second.py 

 |-__init__.py 

 

test.py 

-------------- 

from python_package import First,second 

First.f1() 

second.f2() 

First.py 

--------- 

def f1(): 

    print("This is First function") 



V RajaSekhar              CSE Dept        12 

 

Second.py 

--------------- 

def f2(): 

    print("This is Second Function") 

 

OutPut: 

This is First function 

This is Second Function 

 

Files Handling in Python 

 
 Python File Handling Before we move into the topic ―Python File Handling‖, let us 

try to understand why we need files?  

 So far, we have been receiving the input data from the console and writing the output 

data back to the console. 

 The console only displays a limited amount of data. Hence we don‘t have any issues 

if the input or output is small. What if the output or input is too large? 

 We use files when we have large data as input or output.  

 A file is nothing but a named location on disk which stores data. 

  Files are also used to store data permanently since it stores data on non-volatile 

memory. 

 Most modern file systems are composed of three main parts: 

1. Header: metadata about the contents of the file (file name, size, type, and 

so on) 

2. Data: contents of the file as written by the creator or editor 

3. End of file (EOF): special character that indicates the end of the file 

 

Types of Files in Python 
 Text File 

 Binary File 

1. Text File 
 Text file store the data in the form of characters. 

 Text file are used to store characters or strings. 

 Usually we can use text files to store character data  

eg: abc.txt  

2. Binary File 
 Binary file store entire data in the form of bytes. 

 Binary file can be used to store text, image, audio and video. 



V RajaSekhar              CSE Dept        13 

 Usually we can use binary files to store binary data like images,video files, audio files 

etc. 

File operation on Text Files: 
In Python, we can perform the following file operations: 
 

 Open a file 

 Read or write a file 
 Close a file 

 

Opening a File: 
 Before performing any operations like read or write on a file, the first thing we need 

to do is open a file.  

 Python provides an in-built function open() to open a file.  
 The open function accepts two parameters: the name of the file and the access mode. 

 The access mode specifies what operation we are going to perform on a file whether 
it is read or write.  

 The open() function in turn returns a file object/handle, with which we can perform 
file operations based on the access mode. 

Syntax: file_object=open(filename, access_mode) 
  The allowed modes in Python are 

 r : open an existing file for read operation. The file pointer is positioned at the 

beginning of the file. If the specified file does not exist then we will get 
FileNotFoundError. This is default mode. 

 

 w : open an existing file for write operation. If the file already contains some data  
then it will be overridden. If the specified file is not already available then this mode 

will create that file. 
 

  a : open an existing file for append operation. It won't override existing data. If the 
specified file is not already available then this mode will create a new file. 
 

  r+ : To read and write data into the file. The previous data in the file will not be 
deleted. The file pointer is placed at the beginning of the file. 

 

 w+ : To write and read data. It will override existing data. 

 

 a+ : To append and read data from the file.It wont override existing data. 
 

 x : To open a file in exclusive creation mode for write operation. If the file already 
exists then we will get FileExistsError. 

 

 All the above modes are applicable for text files. If the above modes suffixed with  
'b' then these represents for binary files. 

 

 rb,wb,ab,r+b,w+b,a+b,xb 



V RajaSekhar              CSE Dept        14 

 

Ex: 

1. file_object=open("test.txt") # when file is in the current directory 

2. file_object=open("C:/User/Desktop/test.txt") # specify full path when file is in 

different directory 

 

Closing a File:  
After completing our operations on the file,it is highly recommended to close the file. For 
this we have to use close() function. f.close() 

Writing data to text files: 
We can write character data to the text files by using the following 2 methods. 

 write(str) 

 writelines(list of lines) 

Eg:1 

1) f=open("abcd.txt",'w')  

2) f.write("MREC \n")  

3) f.write("CSE \n")  

4) f.write("DS\n")  

5)f.write("Dept\") 

6) f.close()  

abcd.txt: 

MREC 

CSE 

DS 

DEPT 

Eg 2: 

1) f=open("abcd.txt",'a')  

2) list=["\nAI&ML\n","IOT\n","RAJ"]  

3) f.writelines(list)  

4) f.close() 

 

abcd.txt: 

MREC 

CSE 

DS 

DEPT 

AI&ML 

IOT 

RAJ 

Reading Character Data from text files: 
 We can read character data from text file by using the following read methods. 

read() To read total data from the file 

read(n)  To read 'n' characters from the file 

readline()To read only one line 

readlines() To read all lines into a list 



V RajaSekhar              CSE Dept        15 

 
Eg 1: To read total data from the file 

 f=open("abc.txt",'r')  

 data=f.read()  

 print(data)  

 f.close()  
  

 Output 

MREC 

CSE 

DS 

DEPT 

AI&ML 

IOT 

RAJ 
 
Eg 2: To read only first 10 characters: 

 f=open("abc.txt",'r')  

 data=f.read(10)  

 print(data)  

 f.close() 

Output 

MREC 

CSE 

DS 
Eg 3: To read data line by line: 

f=open("abc.txt",'r')  

line1=f.readline()  

print(line1,end='')  

line2=f.readline()  

print(line2,end='')  

line3=f.readline()  

print(line3,end='')  

f.close()  

 

Output 

MREC 

 CSE 

 DS 
Eg 4: To read all lines into list: 

f=open("abc.txt",'r')  

lines=f.readlines()  

for line in lines:  

print(line,end='')  

f.close()  



V RajaSekhar              CSE Dept        16 

Output 

MREC 

CSE 

DS 

DEPTS 

AI&ML 

IOT 

RAJ 

The seek() and tell() methods: 
tell(): 

 We can use tell() method to return current position of the cursor(file pointer) from  
beginning of the file. 

 The position(index) of first character in files is zero just like string index. 

Eg: 

f=open('F:/abcd.txt','r') 

print(f.tell()) 

print(f.read(2)) 

print(f.tell()) 

print(f.read(2)) 

f.close() 

Output: 

0 

MR 

2 

EC 

seek(): 
 We can use seek() method to move cursor(file pointer) to specified location. 

 Syntax:f.seek(offset) 

Eg: 

f=open('F:/abcd.txt','r') 

print(f.tell()) 

print(f.read(2)) 

print(f.tell()) 

print(f.read(2)) 

f.seek(0) 

print(f.read(4)) 

f.seek(4) 

print(f.read()) 

f.close() 

 

output: 0 

MR 

2 

EC 

MREC 



V RajaSekhar              CSE Dept        17 

File Built in Attributes and  Built in Methods 
 Once we opened a file and we got file object, we can get various details related to 

that file by using its properties or attributes and methods on it. 
 The Following are some of the attributes. 

 name --> Name of opened file 

 mode -->Mode in which the file is opened 

 closed -->Returns boolean value indicates that file is closed or not 

 

Eg: 

 

>>> 

f=open("C:/Users/rajas/AppData/Local/Programs/Python/Python39/m2.py",'r') 

>>> f.name 

'C:/Users/rajas/AppData/Local/Programs/Python/Python39/m2.py' 

>>> f.mode 

'r'  
>>> f.closed 

False 

 

File Built in Methods 

 
Python has the following set of methods available for the file object. 
 

Method Description 

close()  Closes the file 

fileno()  Returns a number that represents the stream, from the operating system's perspective 

flush()  Flushes the internal buffer 

isatty()  Returns whether the file stream is interactive or not 

read()  Returns the file content 

readable()  Returns whether the file stream can be read or not 

readline()  Returns one line from the file 

readlines()  Returns a list of lines from the file 

seek()  Change the file position 

seekable()  Returns whether the file allows us to change the file position 

tell()  Returns the current file position 

truncate()  Resizes the file to a specified size 

writable()  Returns whether the file can be written to or not 

write()  Writes the specified string to the file 

writelines()  Writes a list of strings to the file 

 

 

https://www.w3schools.com/python/ref_file_close.asp
https://www.w3schools.com/python/ref_file_fileno.asp
https://www.w3schools.com/python/ref_file_flush.asp
https://www.w3schools.com/python/ref_file_isatty.asp
https://www.w3schools.com/python/ref_file_read.asp
https://www.w3schools.com/python/ref_file_readable.asp
https://www.w3schools.com/python/ref_file_readline.asp
https://www.w3schools.com/python/ref_file_readlines.asp
https://www.w3schools.com/python/ref_file_seek.asp
https://www.w3schools.com/python/ref_file_seekable.asp
https://www.w3schools.com/python/ref_file_tell.asp
https://www.w3schools.com/python/ref_file_truncate.asp
https://www.w3schools.com/python/ref_file_writable.asp
https://www.w3schools.com/python/ref_file_write.asp
https://www.w3schools.com/python/ref_file_writelines.asp


V RajaSekhar              CSE Dept        18 

File close() Method 
 Close a file after it has been opened: 

 

f = open("raj.txt", "r") 

print(f.read()) 

f.close() 
 

File fileno() Method 
 Return the file descriptor of the stream: 

 

f = open("raj.txt", "r") 

print(f.fileno()) 
 

File flush() Method 
 The flush() method cleans out the internal buffer. 
 You can clear the buffer when writing to a file: 

 

f = open("myfile.txt", "a") 

f.write("Now the file has one more line!") 

f.flush() 

f.write("...and another one!") 
 

File isatty() Method 
 

 The isatty() method returns True if the file stream is interactive, example: connected 

to a terminal device. 
 

f = open("raj.txt", "r") 

print(f.isatty()) 
 

File read() Method 
 

 The read() method returns the specified number of bytes from the file. Default is -1 
which means the whole file. 

 

f = open("raj.txt", "r") 

print(f.read()) 
 

File readable() Method 
 

 The readable() method returns True if the file is readable, False if not. 

 

f = open("raj.txt", "r") 

print(f.readable()) 
 



V RajaSekhar              CSE Dept        19 

File readline() Method 
 

 The readline() method returns one line from the file. 
 You can also specified how many bytes from the line to return, by using the size 

parameter. 

f = open("demofile.txt", "r") 

print(f.readline()) 
 

File readlines() Method 
 The readlines() method returns a list containing each line in the file as a list item. 

 

f = open("raj.txt", "r") 

print(f.readlines()) 

 

f = open("raj.txt", "r") 

print(f.readline()) 
 

File seek() Method 
 The seek() method sets the current file position in a file stream. 
 The seek() method also returns the new postion. 

 

f = open("raj.txt", "r") 

f.seek(4) 

print(f.readline()) 
 

File seekable() Method 
 The seekable() method returns True if the file is seekable, False if not. 
 A file is seekable if it allows access to the file stream, like the seek() method. 

 

f = open("raj.txt", "r") 

print(f.seekable()) 

 

File tell() Method 
 The tell() method returns the current file position in a file stream. 

 

f = open("raj.txt", "r") 

print(f.tell()) 
 

File truncate() Method 
 The truncate() method resizes the file to the given number of bytes. 
 If the size is not specified, the current position will be used. 

 

f = open("demofile2.txt", "a") 

f.truncate(20) 

f.close() 



V RajaSekhar              CSE Dept        20 

 

#open and read the file after the truncate: 

f = open("demofile2.txt", "r") 

print(f.read()) 
 

File writable() Method 
 The writable() method returns True if the file is writable, False if not. 
 A file is writable if it is opened using "a" for append or "w" for write. 

 

f = open("raj.txt", "a") 

print(f.writable()) 
 

 File write() Method 
 The write() method writes a specified text to the file. 
 Where the specified text will be inserted depends on the file mode and stream 

position. 
 "a":  The text will be inserted at the current file stream position, default at the end of 

the file. 
 "w": The file will be emptied before the text will be inserted at the current file stream 

position, default 0. 

 

f = open("demofile2.txt", "a") 

f.write("See you soon!") 

f.close() 

 

#open and read the file after the appending: 

f = open("demofile2.txt", "r") 

print(f.read()) 
 

File writelines() Method 
 The writelines() method writes the items of a list to the file. 

 Where the texts will be inserted depends on the file mode and stream position. 
 "a":  The texts will be inserted at the current file stream position, default at the end of 

the file. 
 "w": The file will be emptied before the texts will be inserted at the current file stream 

position, default 0. 

 

f = open("raj.txt", "a") 

f.writelines(["See you soon!", "Over and out."]) 

f.close() 

 

#open and read the file after the appending: 

f = open("raj.txt", "r") 

print(f.read()) 

 



V RajaSekhar              CSE Dept        21 

File operation on Binary Files: 
 Binary file store entire data in the form of bytes. 

 Binary file can be used to store text, image, audio and video. 

 Usually we can use binary files to store binary data like images,video files, audio files 

etc. 

 In Python, we can perform the following file operations: 

 
 Open a file 

 Read or write a file 
 Close a file 

 

Eg: program to Read an image and that to another. 

 

f1=open('mrec.jpg','rb') 

f2=open('mrec1.jpg','wb') 

#bytes=f1.read() 

f2.write(f1.read()) 

print("Image copied from f1 to f2:\n") 

f1.close() 

f2.close() 
 

File System in python 
 A file system is a process that manages how and where data on storage disk, typically 

a hard disk drive (HDD), is stored, accessed and managed. It is a logical disk 
component that manages a disk's internal operations as it relates to a computer and is 

abstract to a human user. 
 A directory simply is a structured list of documents and folders. A directory can have 

sub-directories and files. When we have too many files, Python directory comes in 

handy in file management or system with directories and sub-directories. 
 Python has os module with multiple methods defined inside for directory and file 

management or system 

 
Working with Directories: 
It is very common requirement to perform operations for directories like 

 

To Know Current Working Directory: 

import os 

print("The cwd=",os.getcwd()) 

 

OutPut: 
The cwd= C:\Users\rajas\AppData\Local\Programs\Python\Python39 

 

To create a sub directory in the current working directory: 

import os 



V RajaSekhar              CSE Dept        22 

os.mkdir('Raj') 

print("The Directory Raj is Created”) 

OutPut: 
 The Directory Raj is Created 

 

To rename a directory in Python: 
 Python has rename( ) function to rename a directory. 

 

Syntax: os.rename(old_name,new_name) 

 

import os 

os.rename('Raj','mrec') 

print("The Directory Raj Renamed to mrec") 

OutPut: 
The Directory Raj Renamed to mrec 

 

To change directories in Python: 
 

 In Python, chdir( ) function defined in module os is used to change the working 
directories. 

 

Example:Suppose we want to change our working directory to Raj in F: Here is how it is 
done. 

>>> import os 

>>> os.getcwd() 

'C:\\Users\\rajas\\AppData\\Local\\Programs\\Python\\Python39' 

>>> os.chdir('F:/') 

>>> os.getcwd() 

'F:\\' 

>>> os.mkdir('Raj') 

>>> os.getcwd() 

'F:\\' 

>>> os.chdir('Raj') 

>>> os.getcwd() 

'F:\\Raj' 

 

To list directories in Python: 
 Python has listdir( ) function in module os to list all the directories and files in a 

particular location. 
 listdir( ) returns a list containing the names of the entries in the directory given by 

path. The list is in arbitrary order, and does not include the special entries '.' and '..' 
even if they are present in the directory. 

 

Here is an example: 
 

>>> import os 



V RajaSekhar              CSE Dept        23 

>>> os.chdir('F:/') 

>>> os.listdir() 

['$RECYCLE.BIN', 'abcd.txt', 'add.txt', 'Applicant Details-Cloud.doc', 'c.py', 'cal.csv', 

'certifiates', 'copy.txt', 'cse1.txt', 'DCIM', 'Download', 'ds.py', 'ds1.py', 'ds2.txt', 

'eee.txt', 'exp2.py', 'filedemo.c', 'filedemo.exe', 'filedemo.o', 'first.py', 'first.txt', 

'fwdresearchmethodologynotes.zip', 'Game', 'hello.txt', 'JAVA PROGRAMMING', 

'm.c', 'm.exe', 'm.o', 'Machine Learning', 'MarriagePhotos', 'merge.c', 'merge.exe', 

'merge.o', 'Meterials', 'Microsoft Office Enterprise 2010 Corporate Final (full 

activated)', 'ML', 'myfile.txt', 'myfile1.txt', 'new.csv', 'new.py', 'new.txt', 'old', 

'package', 'Packages', 'python', 'r.py', 'R20-python', 'Raj', 'raj.bin', 'raj.txt'] 

 

To remove a directory: 
 To remove or delete a directory path in Python, rmdir( ) is used which is defined in 

os module. 
 rmdir( ) works only when the directory we want to delete is empty, else it raises an 

OS error. 
 So here are the ways to remove or delete empty and non-empty directory paths. 

 

>> import os 

>>> os.chdir('F:/Raj') 

>>> os.mkdir('cse') 

>>> os.listdir() 

['cse'] 

>>> os.rmdir('cse') 

 

To remove multiple directories in the path: 

>>> import os 

>>> os.chdir('F:/') 

>>> os.removedirs('Raj/A') 

 

Check if Given Path is File or Directory 
 To check if the path you have is a file or directory, import os module and use isfile() 

method to check if it is a file, and isdir() method to check if it is a directory. 

 

>>> import os 

>>> os.chdir('F:/') 

>>> os.listdir() 

['$RECYCLE.BIN', 'abcd.txt', 'add.txt', 'Applicant Details-Cloud.doc', 'c.py', 

'cal.csv',  'exp2.py', 'filedemo.c', 'filedemo.exe', 'filedemo.o', 'first.py', 'first.txt', 

'Raj'] 

>>> os.path.isfile('add.txt') 

True 

>>> os.path.isdir('Raj') 

True 

 



V RajaSekhar              CSE Dept        24 

Persistent Storage Modules 
 The word ‗persistence‘ means "the continuance of an effect after its cause is 

removed".  
 The term data persistence means it continues to exist even after the application has 

ended. Thus, data stored in a non-volatile storage medium such as, a disk file is 
persistent data storage. 

 Data Persistence is the concept of storing data in a persistent form. 

 It means that the data should be permanently stored on disk for further 
manipulation. 

 There are two types of system used for data persistence they are  

 
 There are two aspects to preserving data for long-term use: converting the data back 

and forth between the object in-memory and the storage format, and working with 

the storage of the converted data.  
 The standard library includes a variety of modules that handle both aspects in 

different situations. 

 
Serialization: 
Serialization in Python is a mechanism of translating data structures or object state into 

a format that can be stored or transmitted and reconstructed later. 

 
De-serialization: 
The reverse operation of serialization is called de-serialization 

 
 The type of manual conversion, of an object to string or byte format (and vice versa) 

is very cumbersome and tedious. It is possible to store the state of a Python object in 
the form of byte stream directly to a file, or memory stream and retrieve to its 

original state. This process is called serialization and de-serialization. 
 Python‘s built in library contains various modules for serialization and de-

serialization process. They are as follows. 

S.No. 
Name of the 

Module 
Description 

1 pickle Python specific serialization library 

2 marshal Library used internally for serialization 

3 shelve Pythonic object persistence 

4 csv library for storage and retrieval of Python data to CSV format 

5 json Library for serialization to universal JSON format 

 
 



V RajaSekhar              CSE Dept        25 

Eg: Writing data to binary file without pickle module. 

f=open('bin.bin','wb') 

num=[10,20,30,40,50] 

arr=bytearray(num) 

f.write(arr) 

f.close() 

f=open('bin.bin','rb') 

num=list(f.read()) 

print(num) 

f.close() 

OutPut: 

[10,20,30,40,50] 
 

 The problem with above program is the binary file requires bytes object only for that 

we have convert to bytes object only. 
 To provide solution for this we have use any above modules 

Pickle Module 

 
 Pickling is the process whereby a python object is converted into byte stream. 
 Unpickling is the reverse of this whereby a byte stream is converted back into an 

object. 
 We can implement pickling and unpickling by using pickle module of Python. 
 pickle module contains dump() function to perform pickling. 

 Syntax:pickle.dump(object,file) 
 pickle module contains load() function to perform unpickling 

 Syntax:obj=pickle.load(file) 

 
Eg: 

 

import pickle 

dict={1:"cse",2:"ds"} 

f=open('bin.bin','wb') 

pickle.dump(dict,f) 

f.close() 

f=open('bin.bin','rb') 

s=pickle.load(f) 

print(s) 

f.close() 

OutPut: 

 {1: 'cse', 2: 'ds'} 

marshal Module 
 The marshal module is used to serialize data—that is, convert data to and from 

character strings, so that they can be stored on file. 



V RajaSekhar              CSE Dept        26 

 The marshal module uses a simple self-describing data format. For each data item, 
the marshalled string contains a type code, followed by one or more type-specific 

fields. Integers are stored in little-endian order, strings are stored as length fields 
followed by the strings‘ contents (which can include null bytes), tuples are stored as 

length fields followed by the objects that make up each tuple, etc. 
 Just as pickle module, marshal module also defined load() and dump() functions for 

reading and writing marshalled objects from / to file. 
 

marshal.dump(value, file[, version]) : 
This function is used to write the supported type value on the open writeable binary file. A 
ValueError exception is raised if the value has an unsupported type. 

 

marshal.load(file) : 
This function reads one value from the open readable binary file and returns it. EOF Error, 
ValueError or TypeError is raised if no value is read. 

 

Example: 

import marshal 

dict={1:"cse",2:"ds"} 

f=open('bin.bin','wb') 

marshal.dump(dict,f) 

f.close() 

f=open('bin.bin','rb') 

s=marshal.load(f) 

print(s) 

f.close() 

OutPut: 

 {1: 'cse', 2: 'ds'} 
 

Command-line Arguments 

 
 There are many different ways in which a program can accept inputs from the user. 

The common way in Python Command-line Arguments is the input() method. 

 Another way to pass input to the program is Command-line arguments. Almost 

every modern programming language support command line arguments.  

 In a similar fashion, python does support command line arguments. It‘s a very 

important feature as it allows for dynamic inputs from the user.  

 In a command-line argument, the input is given to the program through command 

prompt rather than python script like input() method. 

 The Argument which are passing at the time of execution are called Command Line 

Arguments. 

 Python supports different modules to handle command-line arguments. one of the 

popular one of them is sys module. 

 



V RajaSekhar              CSE Dept        27 

sys module: 
 This is the basic and oldest method to handle command-line arguments in 

python. It has a quite similar approach as the C library argc/argv to access the 

arguments. 

  sys module implements the command line arguments through list structure 

named sys.argv argv is the internal list structure which holds the arguments 

passed in command prompt 

 argv is not Array it is a List. It is available sys Module. 

 argv à list to handle dynamic inputs from the user 

 argv[0] à python filename 

 argv[1] àargument 1 

 argv[2] à argument 2 

 argv[3] à argument 3 and so on. 

 Steps to create command line arguments program: 

1. Write a python program 

2. Save the python program as <program name>.py extension 

3. Open a command prompt and change the directory to the python 

program path 

4. Use the below command to execute the program 

5. py < python file.py > < arg1 > < arg2 > < arg3 > 

6. Example: py demo.py 10 20 30 40 50 

 The first item in argv list i.e argv[0] is the python file name à in this case 

demo.py 

 argv[1] is the first argument à 10 

 argv[2] is the second argument à 20 

 argv[3] is the third argument à 30 and so on 

 By default, the type of argv is ―String‖ so we have to typecast as per our 

requirement. 

Example1: 

 

  import sys 

print(type(sys.argv)) 

 Output: 

  D:\>py c.py 

<class 'list'> 

Example2: 

from sys import argv  

print('The Number of Command Line Arguments:', len(argv))  

print('The List of Command Line Arguments:', argv)  

print('Command Line Arguments one by one:')  



V RajaSekhar              CSE Dept        28 

for x in argv: 

    print(x) 

 OutPut: 

D:\>py c.py Raj cse ds 10 

The Number of Command Line Arguments: 5 

The List of Command Line Arguments: ['c.py', 'Raj', 'cse', 'ds', '10'] 

Command Line Arguments one by one: 

c.py 

Raj 

cse 

ds 

10 

Example3:Add two values using command line 

from sys import argv  

a=int(argv[1]) 

b=int(argv[2]) 

sum=a+b 

print("The Sum:",sum) 

OutPut: 

D:\>py c.py 1 2  

The Sum: 3 

Example2:Sum of elements 

from sys import argv  

sum=0  

args=argv[1:]  

for x in args : 

    n=int(x) 

    sum=sum+n  

print("The Sum:",sum) 

OutPut: 

D:\>py c.py 1 2 3 4 5 

The Sum: 15 

 

Exception Handling in Python 

 

Generally any programming language supports two types of errors, 

1. Syntax errors 

2. Runtime errors 

 



V RajaSekhar              CSE Dept        29 

Syntax errors:  

 The errors which occur because of invalid syntax are called syntax errors. 

 Programmer is responsible to correct these syntax errors. Once all syntax errors are 

corrected then only program execution will be started. 

Eg 1: 

a=10 

if a==10 

 print("Raj") 

SyntaxError: invalid syntax 

Eg 2: 

print "Raj" 

SyntaxError: Missing parentheses in call to 'print' 

 

Runtime errors: 
 Runtime errors are also called exceptions. 

 When the program is executing, if something goes wrong because of end user input 

or, programming logic or memory problems etc then we will call them runtime 

errors. 

Exception: 
An exception is nothing but an unwanted or unexpected block which disturbs the normal 

execution flow of program. 

 An Exception is a run time error that happens during the execution of program. 

 An exception is an error that happens during the execution of a program. 

 Python raises an exception whenever it tries to execute invalid code. 

 Error handling is generally resolved by saving the state of execution at the moment 

the error occurred and interrupting the normal flow of the program to execute a 

special function or piece of code, which is known as the exception handler. 

 Depending on the kind of error ("division by zero", "file open error" and so on) 

which had occurred, the error handler can "fix" the problem and the program can be 

continued afterwards with the previously saved data. 

Eg:  

1. print(2/0) ==>ZeroDivisionError: division by zero 

2.  print(2/"ten") ==>TypeError: unsupported operand type(s) for /: 'int' and 'str' 

 

a=int(input("Enter Number:")) 

 print(a) 

  D:\>py test.py  

2 

 Enter Number:ten 

 ValueError: invalid literal for int() with base 10: 'ten‘ 



V RajaSekhar              CSE Dept        30 

Types of Exceptions: 
Exceptions are divided into two types they are, 

1. System defined exceptions 

2. User defined exceptions 

System defined exceptions: 

 These exceptions are defined by system so these are called system defined or pre-

defined exceptions. 

 Every exception in Python is an object. For every exception type the corresponding 

classes are available. 

 Whevever an exception occurs PVM will create the corresponding exception object 

and will check for handling code. If handling code is not available then Python 

interpreter terminates the program abnormally and prints corresponding exception 

information to the console. 

 The rest of the program won't be executed 

 Some of system defined exceptions are as follows, 

 

S. No Name of the Built�in Exception Explanation 

1 ZeroDivisionError 
It is raised when the denominator in a division 

operation is zero 

2 NameError 
It is raised when a local or global variable name is 

not defined 

3 IndexError 
It is raised when the index or subscript in a 

sequence is out of range. 

4 TypeError 
It is raised when an operator is supplied with a 

value of incorrect data type. 

5 ValueError 

It is raised when a built-in method or operation 

receives an argument that has the right data type 

but mismatched or inappropriate values. 

6 KeyError 
KeyError exception is what is raised when you 

try to access a key that isn't in a dictionary ( dict ). 

7 FileNotFoundError 

The error FileNotFoundError occurs because 

you either don't know where a file actually is on 

your computer. Or, even if you do, you don't 

know how to tell your Python program where it 

is. 

8 ModuleNotFoundError 
A ModuleNotFoundError is raised when Python 

cannot successfully import a module. 

 

1. ZeroDivisionError: 



V RajaSekhar              CSE Dept        31 

>>> a=10 

>>> b=0 

>>> print(a/b) 

Traceback (most recent call last): 

  File "<pyshell#2>", line 1, in <module> 

    print(a/b) 

ZeroDivisionError: division by zero 

 

2. NameError: 

>>> print("a=",a) 

Traceback (most recent call last): 

  File "<pyshell#0>", line 1, in <module> 

    print("a=",a) 

NameError: name 'a' is not defined 

3. IndexError: 

>>> name="MREC" 

>>> print(name[10]) 

Traceback (most recent call last): 

  File "<pyshell#2>", line 1, in <module> 

    print(name[10]) 

IndexError: string index out of range 

 

4. ValueError: 

>>> a=int(input("Enter a value:")) 

Enter a value:Raj 

Traceback (most recent call last): 

  File "<pyshell#10>", line 1, in <module> 

    a=int(input("Enter a value:")) 

ValueError: invalid literal for int() with base 10: 'Raj' 

 

5. TypeError: 

>>> a=10 

>>> b="raj" 

>>> print(a/b) 

Traceback (most recent call last): 

  File "<pyshell#4>", line 1, in <module> 

    print(a/b) 

TypeError: unsupported operand type(s) for /: 'int' and 'str' 

 



V RajaSekhar              CSE Dept        32 

6. KeyError: 

>>> D={1:'MREC',2:'CSE',3:'DS',4:'RAJ'} 

>>> print(D[1]) 

MREC 

>>> print(D[5]) 

Traceback (most recent call last): 

  File "<pyshell#8>", line 1, in <module> 

    print(D[5]) 

KeyError: 5 

 

7. FileNotFoundError: 

>>> f=open('Raj.txt','r') 

Traceback (most recent call last): 

  File "<pyshell#22>", line 1, in <module> 

    f=open('Raj.txt','r') 

FileNotFoundError: [Errno 2] No such file or directory: 'Raj.txt' 

8. ModuleNotFoundError: 

>>> import cse_ds 

Traceback (most recent call last): 

  File "<pyshell#6>", line 1, in <module> 

    import cse_ds 

ModuleNotFoundError: No module named 'cse_ds' 

 

Detecting and Handling Exceptions or Exception Handing in Python 

 Exception handling is a concept used in Python to handle the exceptions that occur 

during the execution of any program. Exceptions are unexpected errors that can 

occur during code execution. 

 Exception handling does not mean repairing exception; we have to define an 

alternative way to continue rest of the program normally. 

 It is highly recommended to handle exceptions. The main objective of exception 

handling is Graceful Termination of the program. 

  Exception can be handled in two ways They are 

1. Default Exception Handling 

2. Customized Exception Handling 

 The flowchart describes the exception handling process. 

 

 



V RajaSekhar              CSE Dept        33 

 
 

 

 

Default Exception Handling 

 
 Every exception in Python is an object. For every exception type the corresponding 

classes are available. 

 Whenever an exception occurs PVM will create the corresponding exception object 

and will check for handling code.  

 If handling code is not available then Python interpreter terminates the program 

abnormally and prints corresponding exception information to the console. 

 The rest of the program won't be executed. This  entire process we call it as Default 

Exception Handling 

 If an exception raised inside any method then the method is responsible to create 

Exception object with the following information. 

 Name of the exception. 

 Description of the exception. 



V RajaSekhar              CSE Dept        34 

 Location of the exception. 

 After creating that Exception object the method handovers that object to the PVM. 

 PVM checks whether the method contains any exception handling code or not. If 

method won't contain any handling code then PVM terminates that method 

abnormally. 

 PVM identifies the caller method and checks whether the caller method contain any 

handling code or not. If the caller method also does not contain handling code then 

PVM terminates that caller also abnormally  

 Then PVM handovers the responsibility of exception handling to the default 

exception handler. 

 Default exception handler just print exception information to the console in the 

following formats and terminates the program abnormally. 

 Name of exception: description 

 Location of exception  

Example: 

print("Start:") 

print("Default Exception Handling:") 

print(15/0) 

print("No Exception Block:") 

print("Stop") 

OutPut: 

Start: 

Default Exception Handling: 

Traceback (most recent call last): 

  File "C:/Users/rajas/AppData/Local/Programs/Python/Python39/test.py", 

line 3, in <module> 

    print(15/0) 

ZeroDivisionError: division by zero 

Customized Exception Handling 

 It is highly recommended to handle exceptions. 

 The Exceptions can be handled with the help of the following keywords or clauses in 

python. 

S. No 

Name of the 

Exception Type 

Keyword 

Explanation 

1. try 
It will run the code block in which you expect an 

error to occur. 

2. except 
 Define the type of exception you expect in the try 

block  



V RajaSekhar              CSE Dept        35 

3. else  
If there no  exception, then this block of code will be 

executed  

4. finally 
Irrespective of whether there is an exception or not, 

this block of code will always be executed. 

5. raise 
An exception can be raised forcefully by using 

the raise clause in Python. 

 

 The code which may raise exception is called risky code and we have to take risky 

code inside try block. The corresponding handling code we have to take inside except 

block. 

 We can handle the Exception with following ways. 

1. The try-expect statement 

 If the Python program contains suspicious or risky code that may throw the 

exception, we must place that code in the try block.  

 The try block must be followed with the except statement, which contains a block of 

code that will be executed if there is some exception in the try block. 

 Within the try block if anywhere exception raised then rest of the try block wont be 

executed even though we handled that exception. Hence we have to take only risky 

code inside try block and length of the try block should be as less as possible. 

  If any statement which is not part of try block raises an exception then it is always 

abnormal termination. 

 
Syntax: 

try : 

    #statements in try block 

except : 

    #executed when error in try block 

Example: Without Specific error type: 

print("Start:") 

print("Exception Handling without Specific Error Type:") 

try: 

    print(15/0) 

except: 



V RajaSekhar              CSE Dept        36 

    print("Error occured") 

print("Stop") 

OutPut: 

Start: 

Exception Handling without Specific Error Type: 

Error occured 

Stop 

Example: Catch Specific Error Type 

print("Start:") 

print("Exception Handling with Specific Error Type:") 

try: 

    print(15/0) 

except ZeroDivisionError: 

    print("we can't divide the value with zero") 

print("Stop")   

OutPut: 

Start: 

Exception Handling with Specific Error Type: 

we can't divide the value with zero 

Stop 

 

 

try with multiple except blocks: 
 The way of handling exception is varied from exception to exception. Hence for 

every exception type a separate except block we have to provide. i.e try with multiple 

except blocks is possible and recommended to use. 

 As we know, a single try block may have multiple except blocks. The following 

example uses two except blocks to process two different exception types: 

Example: 

print("Start:") 

print("Exception Handling with Specific Error Type:") 

try: 

    print(15/0) 

except TypeError: 

    print('Unsupported operation') 

except ZeroDivisionError: 

    print("we can't divide the value with zero") 

print("Stop") 

OutPut: 



V RajaSekhar              CSE Dept        37 

Start: 

Exception Handling with Specific Error Type: 

we can't divide the value with zero 

Stop 

Default except block: 
 We can use default except block to handle any type of exceptions. 

 In default except block generally we can print normal error messages. 

 If try with multiple except blocks available then default except block should be last, 

otherwise we will get Syntax Error. 

Syntax:   

   except: 

 statements 

Eg: 

print("Start:") 

print("Default except block:") 

try: 

    x=int(input("Enter First Number: ")) 

    y=int(input("Enter Second Number: "))  

    print(x/y)  

except ZeroDivisionError: 

    print("ZeroDivisionError:Can't divide with zero")  

except: 

    print("Default Except:Plz provide valid input only") 

print("Stop") 

OutPut: 

Start: 

Default except block: 

Enter First Number: 5 

Enter Second Number: a 

Default Except:Plz provide valid input only 

Stop 

except statement using with exception variable: 
 We can use the exception variable with the except statement. It is used by using the 

as keyword. this object will return the cause of the exception. Consider the following 

example: 

 

print("Start:") 

try: 

    x=int(input("Enter First Number: ")) 



V RajaSekhar              CSE Dept        38 

    y=int(input("Enter Second Number: "))  

    print(x/y)  

except Exception as e: 

    print("ZeroDivisionError:Can't divide with zero")  

    print(e) 

print("Stop") 

OutPut: 

Start: 

Enter First Number: 5 

Enter Second Number: 0 

ZeroDivisionError:Can't divide with zero 

division by zero 

Stop 

2.else and finally: 
 In Python, keywords are else and finally can also be used along with the try and 

except clauses.  

 In python, you can also use else clause on the try-except block which must be 

present after all the except clauses. The code enters the else block only if the try 

clause does not raise an exception. 

Syntax: 

try: 

    #statements in try block 

except: 

    #executed when error in try block 

else: 

    #executed if try block is error-free 

finally: 

    #executed irrespective of exception occured or not 



V RajaSekhar              CSE Dept        39 

 
 The finally block consists of statements which should be processed regardless of an 

exception occurring in the try block or not. As a consequence, the error-free try block 

skips the except clause and enters the finally block before going on to execute the rest 

of the code.  

 If, however, there's an exception in the try block, the appropriate except block will be 

processed, and the statements in the finally block will be processed before proceeding 

to the rest of the code. 

 The example below accepts two numbers from the user and performs their division. 

It demonstrates the uses of else and finally blocks. 

print("Start:") 

try: 

    print('try block') 

    x=int(input('Enter a number: ')) 

    y=int(input('Enter another number: ')) 

    z=x/y 

except ZeroDivisionError: 

    print("except ZeroDivisionError block") 

    print("Division by 0 not accepted") 

else: 

    print("else block") 

    print("Division = ", z) 

finally: 

    print("finally block") 



V RajaSekhar              CSE Dept        40 

    x=0 

    y=0 

print ("Out of try, except, else and finally blocks." ) 

print("Stop") 

OutPut: 

Start: 

try block 

Enter a number: 5 

Enter another number: 0 

except ZeroDivisionError block 

Division by 0 not accepted 

finally block 

Out of try, except, else and finally blocks. 

Stop 

 

3.Raise an Exception 
 An exception can be raised forcefully by using the raise clause in Python. It is useful 

in in that scenario where we need to raise an exception to stop the execution of the 

program. 

 Syntax : raise Exception_class,<value>     

 To raise an exception, the raise statement is used. The exception class name follows 

it.An exception can be provided with a value that can be given in the parenthesis. 

 To access the value "as" keyword is used. "e" is used as a reference variable which 

stores the value of the exception. 

 We can pass the value to an exception to specify the exception type 

Example 1: 

print("Start:") 

try: 

    x=int(input('Enter a number upto 100: ')) 

    if x > 100: 

        raise ValueError(x) 

except ValueError: 

    print(x, "is out of allowed range") 

else: 

    print(x, "is within the allowed range") 

print("Stop") 

OutPut:6 

Start: 

Enter a number upto 100: 200 



V RajaSekhar              CSE Dept        41 

200 is out of allowed range 

Stop 

Example 2 Raise the exception with user defined message 

print("Start:") 

try: 

    x=int(input('Enter a positive integer:')) 

    if x <0: 

        raise ValueError("You entered negative number") 

except ValueError as e: 

    print(e) 

print("Stop") 

Output: 

Start: 

Enter a positive integer:-2 

You entered negative number 

Stop 

User defined exceptions 

 

 Some time we have to define and raise exceptions explicitly to indicate that 

something goes wrong, such type of exceptions are called User Defined Exceptions 

or Customized Exceptions. 

 Programmer is responsible to define these exceptions and Python not having any 

idea about these. Hence we have to raise explicitly based on our requirement by 

using "raise" Keyword. 

 steps to create user defined exceptions 

 

Step 1: Create User Defined Exception Class 

 Write a new class  for custom exception and inherit it from an in-build Exception 

class. 

 Define function __init__() to initialize the object of the new class.  

 You can add as many instance variables as you want, to support your exception. 

For simplicity, we are creating one instance variable called message. 

 

class YourException(Exception): 

  def __init__(self, message): 

    self.message = message 

 

You have created a simple user-defined exception class. 

 



V RajaSekhar              CSE Dept        42 

self : 

 self represents the instance of the class. By using the "self" keyword we can access 

the attributes and methods of the class in python. 

 

__init__ : 

 "__init__" is a reseved method in python classes. It is known as a constructor in 

object oriented concepts. This method called when an object is created from the 

class and it allow the class to initialize the attributes of a class. 

Step 2: Raising Exception 

 Now you can write a try-except block to catch the user-defined exception in 

Python. 

 For testing, inside the try block we are raising exception using raise keyword. 

 raise YourException("Userdefined Exceptions") 

 It creates the instance of the exception class YourException. You can pass any 

message to your exception class instance. 

Step 3: Catching Exception 

 Now you have to catch the user-defined exception using except block. 

except YourException as err: 

  print(err.message) 

 We are catching user defined exception called YourException. 

 

Step 4: Write a Program for User-Defined Exception in Python 

 

class ChildrenException(Exception): 

    def __init__(self,arg): 

        self.msg=arg  

class YouthException(Exception): 

    def __init__(self,arg): 

        self.msg=arg 

class AdultException(Exception): 

    def __init__(self,arg): 

        self.msg=arg  

class SeniorException(Exception): 

    def __init__(self,arg): 

        self.msg=arg 

age=int(input("Enter Age:"))  

if (age<18) and (age>0): 

    raise ChildrenException("The Person having the age between (0-18)!!!")  

elif (age<25) and (age>=19): 

    raise YouthException("The Person having the age between (19-24)!!!") 



V RajaSekhar              CSE Dept        43 

elif (age<65) and (age>=25): 

    raise AdultException("The Person having the age between (25-64)!!!")  

elif (age>=65): 

    raise SeniorException("The Person having the age between (65 

above)!!!") 

else: 

    print("You have entered invalid age!!!")  

Output: 

Enter Age:35 

Traceback (most recent call last): 

  File 

"C:/Users/rajas/AppData/Local/Programs/Python/Python39/user.py", 

line 19, in <module> 

    raise AdultException("The Person having the age between (25-64)!!!") 

AdultException: The Person having the age between (25-64)!!!- 

Example2: 

class PassException(Exception): 

    def __init__(self,arg): 

        self.msg=arg 

class FailException(Exception): 

    def __init__(self,arg): 

        self.msg=arg 

class MarksException(Exception): 

    def __init__(self,arg): 

        self.msg=arg 

 

try: 

    marks=int(input("Enter the marks of a subject:")) 

    if(marks<35) and (marks>=0): 

        raise FailException("Fail") 

    elif(marks>=35): 

        raise PassException("Pass") 

    else: 

        raise MarksException("Marks should be positive") 

except FailException as e: 

    print(e) 

except PassException as e: 

    print(e) 

except MarksException as e: 



V RajaSekhar              CSE Dept        44 

    print(e) 

print("Stop") 

Output: 

Enter the marks of a subject:-25 

Marks should be positive 

Stop 

ASSERTIONS in python 

 
 Python assert keyword is defined as a debugging tool that tests a condition. The 

Assertions are mainly the assumption that asserts or state a fact confidently in 

the program. 

 The process of identifying and fixing the bug is called debugging. 

 Very common way of debugging is to use print() statement. But the problem with 

the print() statement is after fixing the bug,compulsory we have to delete the 

extra added print() statments,otherwise these will be executed at runtime which 

creates performance problems and disturbs console output. 

 To overcome this problem we should go for assert statement. The main 

advantage of assert statement over print() statement is after fixing bug we are not 

required to delete assert statements. Based on our requirement we can enable or 

disable assert statements. 

 Hence the main purpose of assertions is to perform debugging. Usully we can 

perform debugging either in development or in test environments but not in 

production environment. Hence assertions concept is applicable only for dev and 

test environments but not for production environment. 

Types of assert statements: 

There are 2 types of assert statements 

1. Simple Version 

2. Augmented Version 

1. Simple Version: 

Syntax: assert conditional_expression 

2. Augmented Version: 

Syntax: assert conditional_expression,message 

 conditional_expression will be evaluated and if it is true then the program will be 

continued.If it is false then the program will be terminated by raising AssertionError. 

By seeing AssertionError, programmer can analyze the code and can fix the 

problem. 

 

Examples:1 

assert True 



V RajaSekhar              CSE Dept        45 

print("Validation Passed") 

 

Output: Validation Passed 

Examples:2 

assert False 

print("Validation Passed") 

Output: 

Traceback (most recent call last): 

  File "D://assert1.py", line 1, in <module>    assert False 

AssertionError 

Examples:3 

assert False ,"Validation Failed" 

print("Validation Passed") 

Output: 

Traceback (most recent call last): 

  File "D://assert1.py",, line 1, in <module> 

    assert False ,"Validation Failed" 

AssertionError: Validation Failed 

Example: 4 

assert "Python" in "Python Programming" 

print("Validation Passed") 

Output: 

  Validation Passed 

Example:5 

assert "Python" in "python Programming","Validation Failed" 

print("Validation Passed") 

Output: 

Traceback (most recent call last): 

  File "D: /assert1.py", line 1, in <module> 

    assert "Python" in "python Programming","Validation Failed" 

AssertionError: Validation Failed 

Example:6 

str1="Raj" 

str2="Raj" 

assert str1==str2,"Strings are not matched" 

print("String are matched") 

Output: 

  String are matched 

Example:7 



V RajaSekhar              CSE Dept        46 

str1="Raj" 

str2="Raj" 

assert str1==str2,"Strings are not matched" 

print("String are matched") 

Output: 

Traceback (most recent call last): 

  File "D:/assert1.py", line 3, in <module> 

    assert str1!=str2,"Strings are not matched" 

AssertionError: Strings are not matched 

Example:8 

assert "Raj" in ["MREC","CSE","DS","Raj"],"Validation Failed" 

print("Validation passed") 

Output: 

Validation passed 

Example:9 

assert "raj" in ["MREC","CSE","DS","Raj"],"Validation Failed" 

print("Validation passed") 

Output: 

Traceback (most recent call last): 

  File "D:/assert1.py", line 1, in <module> 

    assert "raj" in ["MREC","CSE","DS"],"Validation Failed" 

AssertionError: Validation Failed       

Example:10 

import math 

assert math.factorial(5)==120,"Validation Failed" 

print("Validation passed") 

Output: 

Validation passed 

Example:11 

import math 

assert math.factorial(5)!=120,"Validation Failed" 

print("Validation passed") 

Output: 

Traceback (most recent call last): 

  File "D:/assert1.py", line 2, in <module> 

    assert math.factorial(5)!=120,"Validation Failed" 

AssertionError: Validation Failed 



V RajaSekhar              CSE Dept        1 

Python Programming 

MODULE – III(Part-1) 

Agenda: 

 Regular Expression (RE): Introduction,  

 Special Symbols and Characters,  

 REs and Python.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V RajaSekhar              CSE Dept        2 

Regular Expression (RE): 

 A regular expression is a series of characters used to search or find a pattern in a 

string.  

 In other words, a regular expression is a special sequence of characters that form a 

pattern.  

 The regular expressions are used to perform a variety of operations like searching a 

substring in a string, replacing a string with another, splitting a string, etc. 

 The Python programming language provides a built-in module re to work with 

regular expressions. 

  There is a built-in module that gives us a variety of built-in methods to work with 

regular expressions. In Python, the regular expression is known as RegEx in short 

form. 

Special Symbols and Characters 

Creating Regular Expression: 
The regular expressions are created using the following. 
 Metacharacters 

 Special Sequences 

 Sets 

Metacharacters 
 Metacharacters are the characters with special meaning in a regular expression. The 

following table provides a list of metacharacters with their meaning. 

 

Metacharacters Meaning 

[ ] Square brackets specifies a set of characters you wish to match. 

\ Backlash \ is used to escape various characters including all 
metacharacters. 

. A period matches any single character (except newline '\n') 

^ The caret symbol ^ is used to check if a string starts with a certain 

character. 

$ The dollar symbol $ is used to check if a string ends with a certain 

character. 

* The star symbol * matches zero or more occurrences of the pattern left to 

it. 

+ The plus symbol + matches one or more occurrences of the pattern left 

to it. 

{ } Consider this code: {n,m}. This means at least n, and at most m 

repetitions of the pattern left to it. 

| Vertical bar | is used for alternation (or operator). 

() Parentheses () is used to group sub-patterns. 

? The question mark symbol ? matches zero or one occurrence of the 
pattern left to it. 



V RajaSekhar              CSE Dept        3 

[] - Square brackets 

 Square brackets specifies a set of characters you wish to match. 

 

. - Period 

 

 A period matches any single character (except newline '\n'). 

Expression String Matched? 

.. C No match 

Ds 1 match 

Cse 1 match 

Cseds 2 matches  

cse ds 3 matches(including space) 

^ - Caret 

 

 The caret symbol ^ is used to check if a string starts with a certain character. 

Expression String Matched? 

^c C 1 match 

Cse 1 match 

Ds No match 

^ds cse ds 1 match 

Cse No match  

$ - Dollar 

 

 The dollar symbol $ is used to check if a string ends with a certain character. 

Expression String Matched? 

c$ C 1 match 

Mrec 1 match 

Ds No match 

* - Star 

 

 The star symbol * matches zero or more occurrences of the pattern left to it. 

Expression String Matched? 

abc* ab 1 match 

abc 1 match 

abcabc 2 match 

cse No match  

Dsabc 1 match 

Expression String Matched? 

[abcd] Cse 1 match 

cse ds 2 matches 

MREC No match 

cse ds mrec 3 matches 



V RajaSekhar              CSE Dept        4 

+ - Plus 

 

 The plus symbol + matches one or more occurrences of the pattern left to it. 

Expression String Matched? 

ab+c Ac No match (no a character) 

Abc 1 match 

Abbbc 1 match 

Cse No match (a is not followed by n) 

Dsabc 1 match 

? - Question Mark 

 

 The question mark symbol ? matches zero or one occurrence of the pattern left to 

it. 

Expression String Matched? 

ab?c ac 1 match 

abc 1 match 

abbbc No match  

abrc No match  

cseabc 1 match 

 

{} - Braces 

 

 Consider this code: {n,m}. This means at least n, and at most m repetitions of the 

pattern left to it. 

Expression String Matched? 

a{2,3} abc dat No match 

abc data 1 match (at daat) 

aabc daaat 2 matches (at aabc and daaat) 

aabc daaaat 2 matches (at aabc and daaaat) 

 

| - Alternation 

 

 Vertical bar | is used for alternation (or operator). 

Expression String Matched? 

a|b Cde No match 

Ade 1 match (match at ade) 

acdbea 3 matches (at acdbea) 

() - Group 

 

 Parentheses () is used to group sub-patterns. For example, (a|b|c)xz match any 

string that matches either a or b or c followed by xz 



V RajaSekhar              CSE Dept        5 

Expression String Matched? 

(a|b|c)xz ab xz No match 

Abxz 1 match (match at abxz) 

axz cabxz 2 matches (at axzbc cabxz) 

\ - Backslash 

 

 Backlash \ is used to escape various characters including all metacharacters. For 

example, 

 \$a match if a string contains $ followed by a. Here, $ is not interpreted by a 

RegEx engine in a special way. 

 If you are unsure if a character has special meaning or not, you can put \ in front 

of it. This makes sure the character is not treated in a special way. 

>>> print(re.findall(r'$a','dscse$a')) 

[] 

>>> print(re.findall(r'\$a','dscse$a')) 

['$a'] 

 

Special Sequences 
 A special sequence is a character prefixed with \, and it has a special meaning. The 

following table gives a list of special sequences in Python with their meaning. 

Special 

Sequences 

Meaning 

\A Matches if the specified characters are at the start of a string. 

\b Matches if the specified characters are at the beginning or end of a word. 

\B Opposite of \b. Matches if the specified characters are not at the beginning 
or end of a word. 

\d Matches any decimal digit. Equivalent to [0-9] 

\D Matches any non-decimal digit. Equivalent to [^0-9] 

\s Matches where a string contains any whitespace character. Equivalent to [ 

\t\n\r\f\v]. 

\S Matches where a string contains any non-whitespace character. Equivalent 

to [^ \t\n\r\f\v]. 

\w Matches any alphanumeric character (digits and alphabets). Equivalent to 

[a-zA-Z0-9_]. By the way, underscore _ is also considered an alphanumeric 
character. 

\W Matches any non-alphanumeric character. Equivalent to [^a-zA-Z0-9_] 

\Z Matches if the specified characters are at the end of a string. 

 

 \A - Matches if the specified characters are at the start of a string. 

Expression String Matched? 

\Acse cse ds Match 

ds cse No match 



V RajaSekhar              CSE Dept        6 

 \b - Matches if the specified characters are at the beginning or end of a word. 

Expression String Matched? 

\bcse Csemrec Match 

ds csemrec Match 

Dscsemrec No match 

ds\b cse ds Match 

cse ds mrec Match 

cse dsmrec No match 

 

 \B - Opposite of \b. Matches if the specified characters are not at the beginning 

or end of a word. 

Expression String Matched? 

\Bcse Csemrec No match 

ds csemrec No Match 

Dscsemrec Match 

ds\B cse ds No match 

cse ds mrec No match 

cse dsmrec Match 

 

 \d - Matches any decimal digit. Equivalent to [0-9] 

Expression String Matched? 

\d 12mrec3 3 matches (at 12mrec3) 

cse ds No match 

 \D - Matches any non-decimal digit. Equivalent to [^0-9] 

Expression String Matched? 

\D cseds123 5 matches (at cseds123) 

1345 No match 

 

 \s - Matches where a string contains any whitespace character. Equivalent to [ 

\t\n\r\f\v]. 

Expression String Matched? 

\s cse\tds\nmrec 2 match 

Csedsmrec No match 

 

 \S - Matches where a string contains any non-whitespace character. Equivalent to 

[^ \t\n\r\f\v]. 

Expression String Matched? 

\S a b 2 matches (at a b) 

    No match 

 



V RajaSekhar              CSE Dept        7 

 \w - Matches any alphanumeric character (digits and alphabets). Equivalent to [a-

zA-Z0-9_]. By the way, underscore _ is also considered an alphanumeric 

character. 

Expression String Matched? 

\w 12&": ;c  3 matches (at 12&": ;c) 

%"> ! No match 

 \W - Matches any non-alphanumeric character. Equivalent to [^a-zA-Z0-9_] 

Expression String Matched? 

\W 1cse@ds 1 match (at 1cse@ds) 

Cseds No match 

 

 \Z - Matches if the specified characters are at the end of a string. 

Expression String Matched? 

ds\Z cse ds 1 match 

cse ds mrec No match 

ds cse. No match 

 

Sets 
 A set is a set character enclosed in [ ], and it has a special meaning. The following 

table gives a list of sets with their meaning. 

Set Meaning 

[aeiou] Matches with one of the specified characters are present 

[d-s] Matches with any lower case character from d to s 

[^aeiou] Matches with any character except the specified 

[1234] Matches with any of the specified digit 

[3-8] Matches with any digit from 3 to 8 

[a-zA-Z] Matches with any alphabet, lower or UPPER 

 

 [aeiou] Matches with one of the specified characters are present 

>>> print(re.findall(r'[aeiou]','cse and ds dept')) 

['e', 'a', 'e'] 

 

 [d-s] Matches with any lower case character from d to s 

>>> print(re.findall(r'[a-h]','cse and ds dept')) 

['c', 'e', 'a', 'd', 'd', 'd', 'e'] 

 [^aeiou] Matches with any character except the specified 

>>> print(re.findall(r'[^aeiou]','cse and ds dept')) 

['c', 's', ' ', 'n', 'd', ' ', 'd', 's', ' ', 'd', 'p', 't'] 

 [1234] Matches with any of the specified digit 

>>> print(re.findall(r'[12345]','cse-1 cse-2 cse-3 cse-4 ds')) 

['1', '2', '3', '4'] 



V RajaSekhar              CSE Dept        8 

 [a-zA-Z] Matches with any alphabet, lower or UPPER 

>>> print(re.findall(r'[a-zA-Z]','This is Cse and Ds Dept')) 

['T', 'h', 'i', 's', 'i', 's', 'C', 's', 'e', 'a', 'n', 'd', 'D', 's', 'D', 'e', 'p', 't'] 

 

 

REs and Python 

 

Built-in methods of re module 
The re module provides the following methods to work with regular expressions. 

 

1. match() 

2. search() 

3. findall() 

4. finditer() 

5. sub() 

6. split() 

7. compile() 

1. match() in Python: 
 We can use match function to check the given pattern at beginning of target string. 

If the match is available then we will get Match object, otherwise we will get None. 

 The re.match() method will start matching a regex pattern from the very first 

character of the text, and if the match found, it will return a re.Match object. Later 

we can use the re.Match object to extract the matching string. 

Syntax of re.match(): re.match(pattern, string, flags=0) 

 The regular expression pattern and target string are the mandatory arguments, and 

flags are optional. 

 pattern: The regular expression pattern we want to match at the beginning of the 

target string. Since we are not defining and compiling this pattern beforehand (like 

the compile method). The practice is to write the actual pattern using a raw string. 

 string: The second argument is the variable pointing to the target string (In which we 

want to look for occurrences of the pattern). 

 flags: Finally, the third argument is optional and it refers to regex flags by default no 

flags are applied. 

Eg: 

>>> str='This is MREC' 

>>> print(re.match(r'\w{4}',str)) 

<re.Match object; span=(0, 4), match='This'> 

 This re.Match object contains the following items. 



V RajaSekhar              CSE Dept        9 

 A span attribute that shows the locations at which the match starts and ends. i.e., is 

the tuple object contains the start and end index of a successful match.Save this tuple 

and use it whenever you want to retrieve a matching string from the target string 

 Second, A match attribute contains an actual match value that we can retrieve using 

a group() method. 

 The Match object has several methods and attributes to get the information about the 

matching string. Let’s see those. 

Method Description 

group() Return the string matched by the regex 

start() Return the starting position of the match 

end() Return the ending position of the match 

span() Return a tuple containing the (start, end) positions of the match. 

 

>>> res=re.match(r'\w{4}',str) 

>>> res 

<re.Match object; span=(0, 4), match='This'> 

>>> res.group() 

'This' 

>>> res.start() 

0 

>>> res.end() 

4 

>>> res.span() 

(0, 4) 

search( ) in Python: 
 Python regex re.search() method looks for occurrences of the regex pattern inside the 

entire target string and returns the corresponding Match Object instance where the 

match found. 

 Syntax:re.search(pattern, string, flags=0) 

 

>>> import re 

>>> print(re.search('cse','cse and ds depts in MREC')) 

<re.Match object; span=(0, 3), match='cse'> 

>>> print(re.search('ds','cse and ds depts in MREC')) 

<re.Match object; span=(8, 10), match='ds'> 

 



V RajaSekhar              CSE Dept        10 

findall( ) in Python: 
 The RE module’s re.findall() method scans the regex pattern through the entire target 

string and returns all the matches that were found in the form of a Python list. 

 Syntax:re.findall(pattern, string, flags=0) 

>>> print(re.findall('abc','abc abcde bchkdhk abc')) 

['abc', 'abc', 'abc'] 

>>> print(re.findall('cse','cse-A cse-B cse-C cse-D')) 

['cse', 'cse', 'cse', 'cse'] 

>>> print(re.findall('ds','This is ds dept')) 

['ds'] 

finditer() in python: 
 The re.finditer() works exactly the same as the re.findall() method except it returns 

an iterator yielding match objects matching the regex pattern in a string instead of a 

list. It scans the string from left-to-right, and matches are returned in the iterator 

form. Later, we can use this iterator object to extract all matches. 

 In simple words, finditer() returns an iterator over MatchObject objects. 

import re 

res=re.finditer(r'\b\w{3}\b','cse ds raj') 

for match in res: 

    print(match.group()) 

print(re.findall(r'\b\w{3}\b','cse ds raj')) 

outPut: 

cse 

raj 

['cse', 'raj'] 

sub( ) in Python: 
 The sub( ) method of re object replaces the match pattern with specified text in a 

string.  

 The syntax of sub( ) method is sub( pattern, text, string ). 

 The sub( ) method does not modify the actual string instead, it returns the modified 

string as a new string. 

>>> print(re.sub('depts','DEPTS','cse and ds depts') ) 

>>>cse and ds DEPTS 

>>> id='rajasekhar.v86@gmail.com' 

>>> print(re.sub('.com','.in',id)) 

rajasekhar.v86@gmail.in 

split( ) in Python 
 The Pythons re module’s re.split() method split the string by the occurrences of the 

regex pattern, returning a list containing the resulting substrings. 



V RajaSekhar              CSE Dept        11 

 Syntax:re.split(pattern, string, maxsplit=0, flags=0) 

 The regular expression pattern and target string are the mandatory arguments. The 

maxsplit, and flags are optional. 

 pattern: the regular expression pattern used for splitting the target string. 

 string: The variable pointing to the target string (i.e., the string we want to split). 

 maxsplit: The number of splits you wanted to perform. If maxsplit is nonzero, at 

most maxsplit splits occur, and the remainder of the string is returned as the final 

element of the list. 

 flags: By default, no flags are applied. 

 print(re.split('\.','http://www.google.com/')) 

['http://www', 'google', 'com/'] 

 

str=" cse and ds depts in mrec' 

print(re.split(r'\s+',str)) 

['cse', 'and', 'ds', 'depts', 'in', 'mrec'] 

 

str='123-45-678-9' 

print(re.split(r'\D',str,maxsplit=1)) 

['123', '45-678-9'] 

compile() in python: 
 Python’s re.compile() method is used to compile a regular expression pattern 

provided as a string into a regex pattern object (re.Pattern).  

 Later we can use this pattern object to search for a match inside different target 

strings using regex methods such as a re.match() or re.search(). 

 In simple terms, We can compile a regular expression into a regex object to look for 

occurrences of the same pattern inside various target strings without rewriting it. 

Syntax of re.compile() 

 re.compile(pattern, flags=0) 

 pattern: regex pattern in string format, which you are trying to match inside the 

target string. 

 flags: The expression’s behavior can be modified by specifying regex flag values. 

This is an optional parameter 

>>> pattern=re.compile(r'\b\w{4}\b') 

>>> result=patten.findall('abcd raaj') 

>>> result=pattern.findall('abcd raaj') 

>>> result 

['abcd', 'raaj'] 

>>> print(re.findall(pattern,'abcd raaj')) 

['abcd', 'raaj'] 

>>> 



V RajaSekhar              CSE Dept        12 

Examples 

Example 1: Write a regular expression to search digit inside a string 

import re 

str="The total no of students are120" 

res=re.findall(r'\d',str) 

print(res) 

output: 

['1', '2', '0'] 

Example2: match 3-letter word anywhere in the string 

 

str='MREC civil cse eee ece ds iot ai&ml cs mech' 

 print(re.findall(r'\w{3}',str)) 

 

['MRE', 'civ', 'cse', 'eee', 'ece', 'iot', 'mec'] 

 

Example 3 : Extract all characters from the paragraph using Python Regular Expression. 

import re 

str="The total no of students are120" 

print(re.findall(r'.',str)) 

 

['T', 'h', 'e', ' ', 't', 'o', 't', 'a', 'l', ' ', 'n', 'o', ' ', 'o', 'f', ' ', 's', 't', 'u', 'd', 'e', 'n', 't', 's', ' 

', 'a', 'r', 'e', '1', '2', '0'] 

 

Example 4: Extract all of the words and numbers 

import re 

str="The total no of students are120" 

print(re.findall(r'\w+',str)) 

 

['The', 'total', 'no', 'of', 'students', 'are120'] 

 

Example 5: Extract only numbers 

import re 

str="The total no of students are120" 

print(re.findall(r'\d+',str)) 

 

['120'] 

 

Example 6: Extract the beginning word 

import re 



V RajaSekhar              CSE Dept        13 

str="The total no of students are120" 

print(re.findall(r'^\w+',str)) 

 

['The'] 

 

Example 7: Extract first two characters from each word (not the numbers) 

 

import re 

str="The total no of students are120" 

print(re.findall(r'\b[a-zA-Z].',str)) 

 

['Th', 'to', 'no', 'of', 'st', 'ar'] 

 

Example 8: Find out all of the words, which start with a vowel. 

 

import re 

str="The total no of students are120" 

print(re.findall(r'\b[aeiou]\w+',str)) 

 

['of', 'are120'] 

 

Example 9:Extract date from the string 

import re 

str='Today date is June 09, 2021.' 

pattern=r'(\w+)(\s)(\d+)([,]\s)(\d+)' 

print(re.findall(pattern,str)) 

 

[('June', ' ', '09', ', ', '2021')] 

 

import re 

str='Today date is 06-09-2021' 

pattern=r'(\d+)(.)(\d+)(.)(\d+)' 

print(re.findall(pattern,str)) 

 

[('06', '-', '09', '-', '2021')] 

 

import re 

str='Today date is 06-09-2021' 

match=re.search(r'\d{2}-\d{2}-\d{4}',str) 



V RajaSekhar              CSE Dept        14 

print(match.group()) 

 

06-09-2021 

 

Example 10:Extract date from the string 

import re 

str = "Please contact us at rajasekhar.v86@gmail.com for further 

information." 

email = re.findall(r"[a-z0-9\.\-+_]+@[a-z0-9\.\-+_]+\.[a-z]+", str) 

print(email) 

 

['rajasekhar.v86@gmail.com'] 

 

Example 11:Write a Python program that matches a string that has an a followed by zero 

or more b's. 

import re 

def match(str): 

        pattern = 'ab*?' 

        if re.search(pattern,str): 

                return 'Found a match!' 

        else: 

                return('Not matched!') 

 

print(match("ac")) 

print(match("abc")) 

print(match("abbc")) 

print(match("abbbc")) 

print(match("$12")) 

 

Found a match! 

Found a match! 

Found a match! 

Found a match! 

Not matched! 

 

Example 12:Replace maximum 2 occurrences of space, comma, or dot with a colon 

import re 

text = 'CSE DS, MREC .' 

print(re.sub("[ ,.]", ":", text, 2)) 



V RajaSekhar              CSE Dept        15 

 

CSE:DS: MREC . 

 

Example 13:Develop a Python program to match a string that contains only upper and 

lowercase letters, numbers, and underscores.  

import re 

str = 'Raj_1254' 

pattern='^[a-zA-Z0-9_]*$' 

print(re.findall(pattern,str)) 

 

['Raj_1254'] 



V RajaSekhar              CSE Dept        1 

Python Programming 

MODULE – IV 

Agenda: 

 Classes and Object-Oriented Programming (OOP): OOP,  

 Classes, Class Attributes 

 Instances,Instance Attributes 

 Binding and Method Invocation 

  Composition 

  Subclassing and Derivation 

 Inheritance 

  Built-in Functions for Classes, Instances, and Other Objects, 

  Types vs. Classes/Instances 

  Customizing Classes with Special Methods,  

 Privacy,  

 Delegation and Wrapping 

 

 

 

 

 

 

 

 



V RajaSekhar              CSE Dept        2 

Object Oriented Programming (OOP) 

 In all the programs, we have designed our program around functions i.e. blocks of 

statements which manipulate the data. This is called the procedure-oriented way of 

programming. 

  There is another way of organizing our program which is to combine data and functionality 

and wrap it inside something called an object. This is called the object oriented 

programming paradigm. 

 Classes and objects are the two main aspects of object oriented programming.  

 A class creates a new type where objects are instances of the class. 

 Object Oriented Programming is a way of computer programming using the idea of 

“objects” to represents data and methods. It is also, an approach used for creating neat and 

reusable code instead of a redundant one.  

 The program is divided into self-contained objects or several mini-programs. Every 

Individual object represents a different part of the application having its own logic and data 

to communicate within themselves. 

 Now, to get a more clear picture of why we use oops instead of pop, I have listed down the 

differences below. 

 

 Procedure Oriented Programming Object Oriented Programming 

Divided Into In POP, program is divided into small 

parts called functions. 

In OOP, program is divided into parts 

called objects. 

Importance In POP, Importance is not given 

to data but to functions as well 

as sequence of actions to be done. 

In OOP, Importance is given to the 

data rather than procedures or 

functions because it works as a real 

world. 

approach POP follows Top Down approach. OOP follows Bottom Up approach. 

Access 

Specifies 

POP does not have any access specifier. OOP has access specifies named 
Public, Private, Protected. 

Data 

Moving 

In POP, Data can move freely from 

function to function in the system. 

In OOP, objects can move and 

communicate with each other 
through member functions. 

Expansion To add new data and function in POP is 
not so easy. 

OOP provides an easy way to add 
new data and function. 

Data Access In POP, Most function uses Global data 
for sharing that can be accessed freely 

from function to function in the system. 

In OOP, data cannot move easily 
from function to function, it can be 

kept public or private so we can 

control the access of data. 

Overloading In POP, Overloading is not possible. In OOP, overloading is possible in the 

form of Function Overloading and 
Operator Overloading. 

Examples Examples of POP are: C, VB, 
FORTRAN, and Pascal…… 

Examples of OOP are: C++, JAVA, 
VB.NET, C#.NET,PYTHON…. 

 

 



V RajaSekhar              CSE Dept        3 

 Major principles of object-oriented programming system are given below. 

 

 Class 

 Object 

 Method 

 Inheritance 

 Polymorphism 

 Data Abstraction 

 Encapsulation 

Class: 
 A Class in Python is a logical grouping of data and functions. It gives the freedom to 

create data structures that contains arbitrary content and hence easily accessible. 

 A class is a "blueprint" or "prototype" to define an object. Every object has its 

properties and methods. That means a class contains some properties and methods. 

 A class is the blueprint from which the individual objects are created. Class is 

composed of three things: a name, attributes, and operations 

 For example: if you have an employee class, then it should contain an attribute and 

method, i.e. an email id, name, age, salary, etc. 

Syntax 

 

class ClassName:      

        <statement-1>      

        .      

        .       

                <statement-N>     

Object 
 An object (instance) is an instantiation of a class. When class is defined, only the 

description for the object is defined. Therefore, no memory or storage is allocated. 

 Object is composed of three things: a name, attributes, and operations or Objects are 

an instance of a class. It is an entity that has state and behavior. 

Syntax:  object_name = ClassName(arguments) 

 

To define class you need to consider following points 

 

Step 1) In Python, classes are defined by the "Class" keyword 

 class myClass(): 

Step 2) Inside classes, you can define functions or methods that are part of this class 

def ds(self): 

   print ("DS Branch") 

def cse (self,value):  

      print ("CSE Branch" ,value) 



V RajaSekhar              CSE Dept        4 

Here we have defined ds that prints "DS Branch" 

Another method we have defined is cse that prints "CSE Branch"+ value . value is 

the variable supplied by the calling method 

Step 3) Everything in a class is indented, just like the code in the function, loop, if 

statement, etc. Anything not indented is not in the class 

Example: 

class myClass: 

    def ds(self): 

        print("DS Branch") 

    def cse(self,value): 

        print("CSE Branch",value) 

"self" in Python: 
 The self-argument refers to the object itself. Hence the use of the word self. So 

inside this method, self will refer to the specific instance of this object that's 

being operated on. 

 Self is the name preferred by convention by Pythons to indicate the first 

parameter of instance methods in Python. It is part of the Python syntax to 

access members of objects         

Step 4) To make an object of the class 

 c = myClass() 

Step 5) To call a method in a class 

    c.ds() 

    c.cse(5) 

 Notice that when we call the ds or cse, we don't have to supply the self-keyword. 

That's automatically handled for us by the Python runtime. 

 Python runtime will pass "self" value when you call an instance method on in 

instance, whether you provide it deliberately or not You just have to care about the 

non-self arguments 

Step 6) Here is the complete code 

# Example file for working with classes 

class myClass: 

    def ds(self): 

        print("DS Branch") 

    def cse(self,value): 

        print("CSE Branch",value) 

c=myClass() 

c.ds() 

c.cse(5) 

output: DS Branch 

 CSE Branch 5 

 



V RajaSekhar              CSE Dept        5 

Python Constructor: 

 
 Python Constructor in object-oriented programming with Python is a special kind of 

method/function we use to initialize instance members of that class. 

 The name of the constructor should be __init__(self) 

 Constructor will be executed automatically at the time of object creation. 

 The main purpose of constructor is to declare and initialize instance variables. 

 Per object constructor will be executed only once. 

 Constructor can take atleast one argument(atleast self) 

 Constructor is optional and if we are not providing any constructor then python will 

provide default constructor 

 

Types of Constructors: 
We observe three types of Python Constructors, two of which are in our hands. Let‟s begin 

with the one that isn‟t. 

 Default Constructor 

 Non- Parameterized Constructor 

 Parameterized Constructor 

 

Default Constructor: 
A constructor that Python lends us when we forget to include one. This one does absolutely 

nothing but instantiates the object; it is an empty constructor- without a body. 

 

Example: 

class defaultConstructor: 

    def display(self): 

        print("This is Default Constructor") 

dc=defaultConstructor() 

dc.display() 

    OutPut: 

  This is Default Constructor 

Non- Parameterized Constructor: 
 When we want a constructor to do something but none of that is to manipulate 

values, we can use a non-parameterized constructor. 

 As we know that a constructor always has a name init and the name init is prefixed 

and suffixed with a double underscore(__). We declare a constructor using def 

keyword, just like methods. 

 

Syntax: def __init__(self): 

    # body of the constructor 



V RajaSekhar              CSE Dept        6 

Example: 

class NonParameterizedConstructor: 

    def __init__(self): 

        print("Non-Parameterized Constructor") 

    def display(self,name): 

        print("Name=",name) 

npc=NonParameterizedConstructor() 

npc.display('Raj') 

 

  OutPut: 

 Non- Parameterized Constructor 

Name= Raj 

Parameterized constructor:  
 Constructor with parameters is known as parameterized constructor.The 

parameterized constructor take its first argument as a reference to the instance being 

constructed known as self and the rest of the arguments are provided by the 

programmer. 

Example: 

class Addition: 

 first = 0 

 second = 0 

 answer = 0 

 def __init__(self, f, s): 

  self.first = f 

  self.second = s 

  

 def display(self): 

  print("First number = " + str(self.first)) 

  print("Second number = " + str(self.second)) 

  print("Addition of two numbers = " + str(self.answer)) 

 

 def calculate(self): 

  self.answer = self.first + self.second 

obj = Addition(1000, 2000) 

obj.calculate() 

obj.display() 

OutPut: 

First number = 1000 

Second number = 2000 

Addition of two numbers = 3000 

 



V RajaSekhar              CSE Dept        7 

Class Attributes and Instance Attributes 

 

Attributes are noting but variables we the following types are there in python. 

Types of Class Variables in Python: There are three different types of variables in 

OOPs in python. 

 Instance variables (object level variables) 

 Static variables (class level variables) 

 Local variables 

Instance Variables in Python: 
If the value of a variable is changing from object to object then such variables are called as 

instance variables. 

 

class Student: 

   def __init__(self, name, id): 

       self.name=name 

       self.id=id 

s1=Student('Srav', 1) 

s2=Student('Raj', 2) 

print("Studen1 info:") 

print("Name: ", s1.name) 

print("Id : ", s1.id) 

print("Studen2 info:") 

print("Name: ",s2.name) 

print("Id : ",s2.id) 

OutPut: 

Studen1 info: 

Name:  Srav 

Id :  1 

Studen2 info: 

Name:  Raj 

Id :  2 

Static variables in Python: 
 If the value of a variable is not changing from object to object, such types of variables 

are called static variables or class level variables. We can access static variables either 

by class name or by object name. Accessing static variables with class names is 

highly recommended than object names. 

Example: 

class Student: 

   college='MREC' 

   def __init__(self, name, id): 



V RajaSekhar              CSE Dept        8 

       self.name=name 

       self.id=id 

s1=Student('SRAV', 1) 

s2=Student('RAJ', 2) 

print("Studen1 info:") 

print("Name: ", s1.name) 

print("Id : ", s1.id) 

print("College name n : ", Student.college) 

print("\n") 

print("Studen2 info:") 

print("Name: ",s2.name) 

print("Id : ",s2.id) 

print("College name : ", Student.college) 

OutPut: 

Studen1 info: 

Name:  SRAV 

Id :  1 

College name n :  MREC 

 

Studen2 info: 

Name:  RAJ 

Id :  2 

College name :  MREC 

Local Variables in Python: 
 The variable which we declare inside of the method is called a local variable. 

Generally, for temporary usage we create local variables to use within the methods. 

The scope of these variables is limited to the method in which they are declared. 

They are not accessible out side of the methods. 

Example: 

class mrec: 

    dept="DS"#static variable 

    def display(self): 

       dept="CSE" #Local Variable 

       print(dept) 

d=mrec() 

d.display() 

print(d.dept) 

OutPut: 

  CSE 

DS 

 



V RajaSekhar              CSE Dept        9 

Binding and Method Invocation: 
 There are three main types of methods in Python. 

 Instance methods 

 Static methods 

 Class methods. 

 

Instance methods: 
 Instance methods are the most common type of methods in Python classes. These 

are so called because they can access unique data of their instance. 

 And we call it as default method in python.  

 If you have two objects each created from a car class, then they each may have 

different properties. They may have different colors, engine sizes, seats, and so on. 

 Instance methods are methods which act upon the instance variables of the class. 

They are bound with instances or objects, that”s why called as instance methods. 

The first parameter for instance methods should be self variable which refers to 

instance. Along with the self variable it can contain other variables as well. 

 Any method you create will automatically be created as an instance method, unless 

you tell Python otherwise. 

 

Example: 

class Test: 

    def __init__(self, a, b): 

        self.a = a 

        self.b = b  

    def avg(self): 

        return (self.a + self.b) / 2 

s1 = Test(10, 20) 

print( s1.avg() ) 

OutPut:   

   15.0 

 

Class Methods: 
 Class methods are methods which act upon the class variables or static variables of 

the class. We can go for class methods when we are using only class variables (static 

variables) within the method. 

 Class methods should be declared with @classmethod. 

 Just as instance methods have „self‟ as the default first variable, class method should 

have „cls‟ as the first variable. Along with the cls variable it can contain other 

variables as well. 

 Class methods are rarely used in python 

 



V RajaSekhar              CSE Dept        10 

Example: 

 

class Mrec: 

   Dept="CSE" 

   def Dept_name(self,name): 

       print("Instance method=",name) 

   @classmethod 

   def get_Dept(cls): 

       return cls.Dept 

m=Mrec() 

m.Dept_name("DS") 

print("Class method=",Mrec.get_Dept()) 

 

OutPut: 

Instance method= DS 

Class method= CSE 

 

Static methods 
 A static method can be called without an object for that class, using the class name 

directly. If you want to do something extra with a class we use static methods. 

 Inside these methods we won‟t use any instance or class variables. No arguments like 

cls or self are required at the time of declaration. 

 We can declare static method explicitly by using @staticmethod decorator. 

 We can access static methods by using class name or object reference 

 

Example: 

class Demo: 

   @staticmethod 

   def sum(x, y): 

       print(x+y) 

   @staticmethod 

   def multiply(x, y): 

       print(x*y) 

Demo.sum(2, 3) 

Demo.multiply(2,4) 

OutPut: 

  5 

  8 

 

 

 



V RajaSekhar              CSE Dept        11 

Example: 

class Demo: 

    x=10 

    y=5 

    def __init__(self,x,y): 

        self.x=x 

        self.y=y 

    def add(self): 

        print("Sum=",self.x+self.y) 

    @classmethod 

    def sub(cls): 

        print("Sub=", cls.x-cls.y) 

    @staticmethod 

    def multiply(x,y): 

       print("Mul=",x*y) 

d=Demo(10,5) 

d.add() 

Demo.sub() 

Demo.multiply(10,5) 

OutPut: 

 

Sum= 15 

Sub= 5 

Mul= 50 

Inheritance or Is-A Relation in Python 
 

 
 The inheritance is the process of acquiring the properties of one class to another 

class. 

 Inheritance in python programming is the concept of deriving a new class from an 

existing class.  

 Using the concept of inheritance we can inherit the properties of the existing class to 

our new class.  

 The new derived class is called the child class and the existing class is called the 

parent class.  

 The Parent class is the class which provides features to another class. The parent 

class is also known as Base class or Superclass. 

 The Child class is the class which receives features from another class. The child 

class is also known as the Derived Class or Subclass. 

Advantages of Inheritance: 

 Code reusability- we do not have to write the same code again and again, we can 



V RajaSekhar              CSE Dept        12 

just inherit the properties we need in a child class. 

 It represents a real world relationship between parent class and child class. 

 It is transitive in nature. If a child class inherits properties from a parent class, 

then all other sub-classes of the child class will also inherit the properties of the 

parent class. 

 There are five types of inheritances, and they are as follows. 

 Simple Inheritance (or) Single Inheritance 

 Multiple Inheritance 

 Multi-Level Inheritance 

 Hierarchical Inheritance 

 Hybrid Inheritance 

The following picture illustrates how various inheritances are implemented. 

Creating a Child Class 

 In Python, we use the following general structure to create a child class from a parent 

class. 

Syntax: 

class ChildClassName(ParentClassName): 

    ChildClass implementation 

 

 



V RajaSekhar              CSE Dept        13 

Simple Inheritance (or) Single Inheritance 
In this type of inheritance, one child class derives from one parent class. Look at the 

following example code. 
 

Example 

class Parent: 

 def func1(self): 

  print("This function is in parent class.") 

 

class Child(Parent): 

 def func2(self): 

  print("This function is in child class.") 

 

object = Child() 

object.func1() 

           object.func2() 

OutPut: 

This function is in parent class. 

           This function is in child class. 

Multi-Level Inheritance 
 In this type of inheritance, the child class derives from a class which already derived 

from another class. Look at the following example code. 

Example: 

class Parent: 

      def func1(self): 

          print('this is function 1') 

class Child(Parent): 

      def func2(self): 

          print('this is function 2') 

class Child2(Child): 

      def func3(self): 

          print('this is function 3') 

ob = Child2() 

ob.func1() 

ob.func2() 

           ob.func3() 

OutPut: 

this is function 1 

this is function 2 

            this is function 3 



V RajaSekhar              CSE Dept        14 

Hierarchical inheritance:  
 When we derive or inherit more than one child class from one (same) parent class. 

Then this type of inheritance is called hierarchical inheritance. 

 

Example: 

class Parent: 

 def func1(self): 

  print("This function is in parent class.") 

class Child1(Parent): 

 def func2(self): 

  print("This function is in child 1.") 

class Child2(Parent): 

 def func3(self): 

  print("This function is in child 2.") 

object1 = Child1() 

object2 = Child2() 

object1.func1() 

object1.func2() 

object2.func1() 

            object2.func3() 

OutPut: 

This function is in parent class. 

This function is in child 1. 

This function is in parent class. 

            This function is in child 2. 

Multiple Inheritance:  
When child class is derived or inherited from the more than one parent classes. This is 

called multiple inheritance. In multiple inheritance, we have two parent classes/base classes 

and one child class that inherits both parent classes‟ properties. 

Example: 

class Father: 

 fathername = "" 

 def father(self): 

  print(self.fathername) 

class Mother: 

 mothername = "" 

 def mother(self): 

  print(self.mothername) 

 

class Son(Mother, Father): 



V RajaSekhar              CSE Dept        15 

 def parents(self): 

  print("Father :", self.fathername) 

  print("Mother :", self.mothername) 

s1 = Son() 

s1.fathername = "Raj" 

s1.mothername = "Srav" 

           s1.parents() 

OutPut: 

Father : Raj 

           Mother : Srav 

 

Hybrid Inheritance:  
Hybrid inheritance satisfies more than one form of inheritance ie. It may be consists of all 

types of inheritance that we have done above. It is not wrong if we say Hybrid Inheritance is 

the combinations of simple, multiple, multilevel and hierarchical inheritance. This type of 

inheritance is very helpful if we want to use concepts of inheritance without any limitations 

according to our requirements. 

Example: 

class School: 

 def func1(self): 

  print("This function is in school.") 

 

class Student1(School): 

 def func2(self): 

  print("This function is in student 1. ") 

 

class Student2(School): 

 def func3(self): 

  print("This function is in student 2.") 

 

class Student3(Student1, School): 

 def func4(self): 

  print("This function is in student 3.") 

object = Student3() 

object.func1() 

object.func2() 

object.func4() 

OutPut: 

This function is in school. 

This function is in student 1.  

           This function is in student 3. 



V RajaSekhar              CSE Dept        16 

Super() Function in Python: 
 super() is a predefined function in python. By using super() function in child class, 

we can call, 

 Super class constructor. 

 Super class variables. 

 Super class methods. 

1. Calling super class constructor from child class constructor using super() 

Example: 

 

class A: 

   def __init__(self): 

       print("super class A constructor") 

class B(A): 

   def __init__(self): 

       print("Child class B constructor") 

       super().__init__() 

                   b=B() 

OutPut: 

Child class B constructor 

           super class A constructor 

 

2. Calling super class method from child class method using super()  

 

class A: 

   def m1(self): 

       print("Super class A: m1 method") 

class B(A): 

   def m1(self): 

       print("Child class B: m1 method") 

       super().m1() 

b=B() 

b.m1() 

Output: 

Child class B: m1 method 

            Super class A: m1 method 

 

3. Calling super class variable from child class method using super() 

class A: 

   x=10 

   def m1(self): 

       print("Super class A: m1 method") 



V RajaSekhar              CSE Dept        17 

class B(A): 

   x=20 

   def m1(self): 

       print('Child class x variable', self.x) 

       print('Super class x variable', super().x) 

b=B() 

b.m1() 

 

Output: 

Child class x variable 20 

            Super class x variable 10 

Composition (Has A Relation): 

 
 It is one of the fundamental concepts of Object-Oriented Programming. In this 

concept, we will describe a class that references to one or more objects of other 

classes as an Instance variable. Here, by using the class name or by creating the 

object we can access the members of one class inside another class. It enables 

creating complex types by combining objects of different classes. It means that a class 

Composite can contain an object of another class Component. This type of 

relationship is known as Has-A Relation. 

 In composition one of the classes is composed of one or more instance of other 

classes. In other words one class is container and other class is content and if you 

delete the container object then all of its contents objects are also deleted. 

 

Syntax: 

class A : 



V RajaSekhar              CSE Dept        18 

      # variables of class A 

      # methods of class A 

      ... 

      ... 

class B :  

      # by using "object" we can access member's of class A. 

      object = A() 

 

      # variables of class B 

      # methods of class B 

      ... 

                 ... 
Example: 

class Component: 

 def __init__(self): 

  print('Component class object created...') 

 def m1(self): 

  print('Component class m1() method executed...') 

class Composite: 

 def __init__(self): 

  self.obj1 = Component() 

  print('Composite class object also created...') 

 def m2(self): 

  print('Composite class m2() method executed...') 

  self.obj1.m1() 

obj2 = Composite() 

           obj2.m2() 

OutPut: 

Component class object created... 

Composite class object also created... 

Composite class m2() method executed... 

           Component class m1() method executed... 

 

Privacy or Python Access Modifiers: 
 

 
 In most of the object-oriented languages access modifiers are used to limit the access 

to the variables and functions of a class. Most of the languages use three types of 

access modifiers, they are –  

 Private 

 Public  



V RajaSekhar              CSE Dept        19 

 Protected. 

 Just like any other object oriented programming language, access to variables or 

functions can also be limited in python using the access modifiers. Python makes the 

use of underscores to specify the access modifier for a specific data member and 

member function in a class. 

 Access modifiers play an important role to protect the data from unauthorized access 

as well as protecting it from getting manipulated.  

 When inheritance is implemented there is a huge risk for the data to get 

destroyed(manipulated) due to transfer of unwanted data from the parent class to the 

child class. Therefore, it is very important to provide the right access modifiers for 

different data members and member functions depending upon the requirements. 

Python: Types of Access Modifiers 
 There are 3 types of access modifiers for a class in Python. These access modifiers 

define how the members of the class can be accessed. Of course, any member of a 

class is accessible inside any member function of that same class. Moving ahead to 

the type of access modifiers, they are: 

 

Access Modifier: Public 
 The members declared as Public are accessible from outside the Class through an 

object of the class. 

Example: 

class Student: 

    def __init__(self,name,dept): 

        self.name=name#Public attribute 

        self.dept=dept#Public attribute 

class Stud(Student): 

    pass 

s1=Student("Raj","CSE") 

print("Name=",s1.name) 

print("Dept=",s1.dept) 

d=Stud("Srav","DS") 

print("Name=",d.name) 

print("Dept=",d.dept) 

OutPut: 

   Name=Raj 

   Dept=CSE 

Name=Srav 

   Dept=DS 
Access Modifier: Private 

 These members are only accessible from within the class. No outside Access is 

allowed. 



V RajaSekhar              CSE Dept        20 

 It is also not possible to inherit the private members of any class (parent class) to 

derived class (child class). Any instance variable in a class followed by self keyword 

and the variable name starting with double underscore ie. self.__varName are the 

private accessed member of a class. 

 

Example: 

class Student: 

    def __init__(self, name, dept): 

        self.__name = name # private 

        self.__dept  = dept  # private 

s1=Student("Raj","CSE") 

print("Name=",s1.__name) 

print("Dept=",s1.__dept) 

OutPut:  error 

protected Access Modifier: 
 Protected variables or we can say protected members of a class are restricted to be 

used only by the member functions and class members of the same class. And also it 

can be accessed or inherited by its derived class ( child class ).  

 We can modify the values of protected variables of a class. The syntax we follow to 

make any variable protected is to write variable name followed by a single 

underscore (_) ie. _varName. 

Example: 

class Student: 

    def __init__(self, name, dept): 

        self._name = name # Protected 

        self._dept  = dept  #Protected 

class Stu(Student): 

    pass 

s1=Student("Raj","CSE") 

print("Name=",s1._name) 

print("Dept=",s1._dept) 

s2=Stu("Srav","DS") 

print("Name=",s2._name) 

print("Dept=",s2._dept) 

OutPut: 

Name= Raj 

Dept= CSE 

Name= Srav 

Dept= DS 

 



V RajaSekhar              CSE Dept        21 

Polymorphism in Python 

 Polymorphism is taken from the Greek words Poly (many) and morphism (forms). It 

means that the same function name can be used for different types. This makes 

programming easier. 

 Polymorphism means having vivid or different forms. In the programming world, 

Polymorphism refers to the ability of the function with the same name to carry 

different functionality altogether. 

Types of Polymorphism : 

 Compile time Polymorphism 
 Run time Polymorphism 

 

Compile time Polymorphism or Method Overloading: 
 Unlike many other popular object-oriented programming languages such as Java, 

Python doesn‟t support compile-time polymorphism or method overloading. If a 

class or Python script has multiple methods with the same name, the method defined 

in the last will override the earlier one. 

 Python doesn‟t use function arguments for method signature, that‟s why method 

overloading is not supported in Python. 

Example: 

class OverloadDemo: 

   def multiply(self,a,b): 

       print(a*b) 

   def multiply(self,a,b,c): 

       print(a*b*c) 

m=OverloadDemo() 

m.multiply(5,10)   

OutPut: 

Traceback (most recent call last): 

  File "F:\R20-python\lab\ac.py", line 7, in <module> 

    m.multiply(5,10) 

TypeError: multiply() missing 1 required positional argument: 'c' 

 

Run time Polymorphism or Method Overriding: 

 In Python, whenever a method having same name and arguments is used in both 

derived class as well as in base or super class then the method used in derived class is 

said to override the method described in base class. Whenever the overridden 

method is called, it always invokes the method defined in derived class. The method 

used in base class gets hidden. 

 

Example: 



V RajaSekhar              CSE Dept        22 

 

class methodOverride1:                           

    def display(self): 

        print("method invoked from base class") 

 

class methodOverride2(methodOverride1): 

    def display(self): 

        print("method invoked from derived class") 

 

ob=methodOverride2() 

ob.display() 

OutPut: 

   method invoked from derived class 

Built in Functions for Classes, Instances, and Other Objects, 

In Python we have different typed of built in functions in Python. 

1. hasattr() Function 

 The python hasattr() function returns true if an object has given named attribute. 

Otherwise, it returns false. 

Syntax: hasattr(object, attribute)   

Parameters 

 object: It is an object whose named attribute is to be checked. 

 attribute: It is the name of the attribute that you want to search. 

 Return:It returns true if an object has given named attribute. Otherwise, it returns 

false. 

Example: 

class Demo: 

    name="raj" 

    dept="CSE" 

obj=Demo() 

print(hasattr(Demo,'name')) 

            print(hasattr(Demo,'rollno')) 

OutPut: 

True 

            False 

2. getattr() Function 

 The python getattr() function returns the value of a named attribute of an 

object. If it is not found, it returns the default value. 

Syntax: getattr(object, attribute, default)   

 

Parameters: 



V RajaSekhar              CSE Dept        23 

 object: An object whose named attribute value is to be returned. 

 attribute: Name of the attribute of which you want to get the value. 

 default (optional): It is the value to return if the named attribute does not 

found. 

Return:It returns the value of a named attribute of an object. If it is not found, it 

returns the default value. 

Example: 

class Demo: 

    name="raj" 

    dept="CSE" 

obj=Demo() 

print("name=",getattr(Demo,'name')) 

print("college=",getattr(Demo,'college',"MREC")) 

OutPut: 

 name= raj 

college= MREC 

3. setattr() Function 

 Python setattr() function is used to set a value to the object's attribute. It takes 

three arguments an object, a string, and an arbitrary value, and returns none. 

It is helpful when we want to add a new attribute to an object and set a value 

to it. The signature of the function is given below. 

Syntax: setattr (object, name, value)   

Parameters 

 object: It is an object which allows its attributes to be changed. 

 name : A name of the attribute. 

 value : A value, set to the attribute. 

Return:It returns None to the caller function. 

Example: 

 

class Demo: 

    name="" 

    dept="" 

    id=0 

    def __init__(self,name,dept,id): 

        self.name=name 

        self.dept=dept 

        self.id=id 

obj=Demo("Raj","CSE",1) 

print(obj.name) 

print(obj.dept) 

print(obj.id) 



V RajaSekhar              CSE Dept        24 

setattr(obj,'college','MREC') 

print(obj.college) 

OutPut: 

  Raj 

CSE 

1 

MREC    

4. delattr() Function 

 Python delattr() function is used to delete an attribute from a class. It takes 

two parameters first is an object of the class and second is an attribute which 

we want to delete. After deleting the attribute, it no longer available in the 

class and throws an error if try to call it using the class object. 

Syntax: delattr (object, name)   

Parameters 

 object: Object of the class which contains the attribute. 

 name: The name of the attribute to delete. It must be a string. 

Return: It returns a complex number. 

Example: 

class Demo: 

    name="" 

    dept="" 

    id=0 

    def __init__(self,name,dept,id): 

        self.name=name 

        self.dept=dept 

        self.id=id 

obj=Demo("Raj","CSE",1) 

print(obj.name) 

print(obj.dept) 

print(obj.id) 

setattr(obj,'college','MREC') 

print(obj.college) 

delattr(obj,'college') 

print(obj.college) 

OutPut: 

Raj 

CSE 

1 

MREC 

Traceback (most recent call last): 

  File "F:\R20-python\lab\ac.py", line 16, in <module> 



V RajaSekhar              CSE Dept        25 

    print(obj.college) 

             AttributeError: 'Demo' object has no attribute 'college' 

5. isinstance() Function 

 Python isinstance() function is used to check whether the given object is an 

instance of that class. If the object belongs to the class, it returns True. 

Otherwise returns False. It also returns true if the class is a subclass. 

 The isinstance() function takes two arguments object and classinfo and returns 

either True or False. The signature of the function is given below. 

Syntax: isinstance(object, classinfo)   

Parameters 

 object: It is an object of string, int, float, long or custom type. 

 classinfo: Class name. 

Return:It returns boolean either True or False. 

6. issubclass() function 

 The issubclass() function returns True if the specified object is a subclass of 

the specified object, otherwise False. 

Syntax: issubclass(object, subclass) 

Parameter  

 object It is an object of string, int, float, long or custom type. 

 subclass Name of the subclass 

Return:It returns boolean either True or False. 

 

Example: 

class A: 

   pass 

class B(A): 

   pass 

b=B() 

print("b is an instance of the class B:",isinstance(b,B)) 

            print("B is sub class of A Class:",issubclass(B,A)) 

OutPut: 

b is an instance of the class B: True 

           B is sub class of A Class: True 

Types vs. Classes/Instances: 

 

Properties Types Class 

Origin Pre-defined data types User-defined data types 

Stored 

structure 

Stored in a stack Reference variable is stored in 

stack and the original object is 



V RajaSekhar              CSE Dept        26 

stored in heap 

When copied Two different variables is created along with 

different assignment even though the both 

variables having the same address if they are 

pointing the same value 

Two reference variable is 

created but both are pointing 

to the same object on the heap 

When 

changes are 

made in the 

copied 

variable 

Change does not reflect in the original ones. Changes reflected in the 

original ones. 

Default value Primitive datatypes having the default value 

like 0 for int 0.0 for float etc. 

No default value for the 

reference variable which is 

created for a class 

Example a=15 

print("Type of a=",type(a)) 

 

output: 

Type of a= <class 'int'> 

class A: 

    def __init__(self,a): 

        self.a=a 

obj=A(10) 

print("Type of obj=",type(obj)) 

 

output: 

Type of obj= <class 

'__main__.A'> 

 

Delegation and Wrapping 

 

 Delegation is the mechanism through which an actor assigns a task or part of a task 

to another actor. This is not new in computer science, as any program can be split 

into blocks and each block generally depends on the previous ones. Furthermore, 

code can be isolated in libraries and reused in different parts of a program, 

implementing this "task assignment". In an OO system the assignee is not just the 

code of a function, but a full-fledged object, another actor. 

 The main concept to retain here is that the reason behind delegation is code reuse. 

We want to avoid code repetition, as it is often the source of regressions; fixing a bug 



V RajaSekhar              CSE Dept        27 

in one of the repetitions doesn't automatically fix it in all of them, so keeping one 

single version of each algorithm is paramount to ensure the consistency of a system.  

 Delegation helps us to keep our actors small and specialised, which makes the whole 

architecture more flexible and easier to maintain (if properly implemented). 

Changing a very big subsystem to satisfy a new requirement might affect other parts 

system in bad ways, so the smaller the subsystems the better (up to a certain point, 

where we incur in the opposite problem, but this shall be discussed in another post). 

Example: 

 

class Dept: 

    def __init__(self,insem,endsem): 

        self.insem=insem 

        self.endsem=endsem 

    def marks(self): 

        return self.insem+self.endsem 

     

class student: 

    def __init__(self,sname,year,insem,endsem): 

        self.sname=sname 

        self.year=year 

        self.obj_Dept=Dept(insem,endsem) 

    def tmarks(self): 

        print("The Total Marks of %s" 

%self.sname,self.obj_Dept.marks()) 

s=student('Raj','First',20,65) 

s.tmarks() 

        OutPut: 

  The Total Marks of Raj 85 



V RajaSekhar              CSE Dept        1 

Python Programming 

MODULE – V 

Agenda: 

 GUI Programming: Introduction 

 Tkinter and Python Programming 

  Brief Tour of Other GUIs 

  Related Modules and Other GUIs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V RajaSekhar              CSE Dept        2 

Graphical User Interface (GUI) 

 

Graphical User Interface (GUI) is nothing but a desktop application which helps you to 
interact with the computers. They are used to perform different tasks in the desktops, 

laptops and other electronic devices. 
 

 GUI apps like Text-Editors are used to create, read, update and delete different 

types of files. 

 GUI apps like Chess and Solitaire are games which you can play. 

 GUI apps like Google Chrome, Firefox and Microsoft Edge are used to browse 

through the Internet. 
 

They are some different types of GUI apps which we daily use on the laptops or desktops.  

 

Python Libraries To Create Graphical User Interfaces: 
Python has a excess of libraries and these 4 stands out mainly when it comes to GUI. There 

are as follows: 

 Kivy 
 Python QT 

 wxPython 
 Tkinter 

 Jpython 

Among all of these, Tkinter is preferred by learners and developers just because of how 
simple and easy it is. 

Tkinter 

 
 The primary GUI toolkit we will be using is Tk (Toolkit), Python’s default GUI, 

We’ll access Tk from its Python interface called Tkinter (i.e. Tk interface ). It is 

originally designed for the Tool Command Language (TCL). Due to Tk’s 

popularity, it has been ported to a variety of other scripting languages, including 
Perl (Perl/Tk), Ruby (Ruby/Tk), and Python (Tkinter). 

 Tkinter is actually an inbuilt Python module used to create simple GUI apps. It is 

the most commonly used module for GUI apps in the Python. 

 We no need to worry about installation of the Tkinter module as it comes 

with Python 3.6 version by default. 

 Consider the following diagram, it shows how an application actually executes in 
Tkinter: 

 



V RajaSekhar              CSE Dept        3 

Developing desktop based applications with python Tkinter is not a complex task. An 
empty Tkinter top-level window can be created by using the following steps. 

1. import the Tkinter module. 
2. Create the main application window. 

3. Add the Widgets like labels, buttons, frames, etc. to the window. 

4. Call the Main event loop so that the actions can take place on the user's computer 

screen. 

If you noticed, there are 2 keywords here that you might not know at this point. These are 
the 2 keywords: 

 Widgets 

 Main Event Loop 

An event loop is basically telling the code to keep displaying the window until we manually 
close it. It runs in an infinite loop in the back-end. 

Example 

from tkinter import *   

 

#creating the application main window.    
 top = Tk()   
 

 #Entering the event main loop  
top.mainloop()   

 

Example 

import tkinter  

window = tkinter.Tk()  
 

# to rename the title of the window window.title("MREC") 

 # pack is used to show the object in the window 
  

label = tkinter.Label(window, text = "Hello MREC CSE!").pack() 

window.title("GUI Window") 
 window.mainloop() 

 

Tkinter widgets  

Widgets are something like elements in the HTML. You will find different types 

of widgets to the different types of elements in the Tkinter. 

There are various widgets like button, canvas, checkbutton, entry, etc. that are used to 
build the python GUI applications. 

SN Widget Description 

1 Button  The Button is used to add various kinds of buttons to the python 

https://www.javatpoint.com/python-tkinter-button


V RajaSekhar              CSE Dept        4 

application. 

2 Canvas  The canvas widget is used to draw the shapes in your GUI. 

3 Checkbutton  The Checkbutton is used to display the CheckButton on the window. 

4 Entry 

The entry widget is used to display the single-line text field to the user. 
It is commonly used to accept user values (Input Fields) 

5 Frame 

It can be defined as a container to which, another widget can be added 
and organized. 

6 Label 

A label is a text used to display some message or information about the 
other widgets. 

7 ListBox The ListBox widget is used to display a list of options to the user. 

8 Menubutton  The Menubutton is used to display the menu items to the user. 

9 Menu It is used to add menu items to the user. 

10 Message  The Message widget is used to display the message-box to the user. 

11 Radiobutton  

The Radiobutton is different from a checkbutton. Here, the user is 

provided with various options and the user can select only one option 
among them. 

12 Scale It is used to provide the slider to the user.  

13 Scrollbar  

It provides the scrollbar to the user so that the user can scroll the 
window up and down. 

14 Text 

It is different from Entry because it provides a multi-line text field to 
the user so that the user can write the text and edit the text inside it. 

14 Toplevel It is used to create a separate window container. 

15 Spinbox  It is an entry widget used to select from options of values. 

16 PanedWindow  It is like a container widget that contains horizontal or vertical panes. 

17 LabelFrame  A LabelFrame is a container widget that acts as the container 

18 MessageBox 

This module is used to display the message-box in the desktop based 

applications. 

These widgets are the reason that Tkinter is so popular. It makes it really easy to 
understand and use practically. 

Python Tkinter Geometry Managers 
 

The Tkinter geometry specifies the method by using which; the widgets are represented on 
display. The python Tkinter provides three geometry methods that help with positioning 

our widgets. 

1. The pack() method  
2. The grid() method  

3. The place() method 

https://www.javatpoint.com/python-tkinter-canvas
https://www.javatpoint.com/python-tkinter-checkbutton
https://www.javatpoint.com/python-tkinter-entry
https://www.javatpoint.com/python-tkinter-frame
https://www.javatpoint.com/python-tkinter-label
https://www.javatpoint.com/python-tkinter-listbox
https://www.javatpoint.com/python-tkinter-menubutton
https://www.javatpoint.com/python-tkinter-menu
https://www.javatpoint.com/python-tkinter-message
https://www.javatpoint.com/python-tkinter-radiobutton
https://www.javatpoint.com/python-tkinter-scale
https://www.javatpoint.com/python-tkinter-scrollbar
https://www.javatpoint.com/python-tkinter-text
https://www.javatpoint.com/python-tkinter-toplevel
https://www.javatpoint.com/python-tkinter-spinbox
https://www.javatpoint.com/python-tkinter-panedwindow
https://www.javatpoint.com/python-tkinter-labelframe
https://www.javatpoint.com/python-tkinter-messagebox


V RajaSekhar              CSE Dept        5 

Python Tkinterpack() method  

 

The pack() widget is used to organize widget in the block, which mean it occupies the 
entire available width. It’s a standard method to show the widgets in the window. 

 
The syntax to use the pack() is given below. 

Syntax: 

widget.pack(options)   
 

A list of possible options that can be passed in pack() is given below. 

 side: it represents the side of the parent to which the widget is to be placed on the 

window. 

 

Example 

 
from tkinter import *   

parent = Tk()   
redbutton = Button(parent, text = "Red", fg = "red")   
redbutton.pack( side = LEFT)   

greenbutton = Button(parent, text = "Black", fg = "black")   
greenbutton.pack( side = RIGHT )   

bluebutton = Button(parent, text = "Blue", fg = "blue")   
bluebutton.pack( side = TOP )   

blackbutton = Button(parent, text = "Green", fg = "red")   
blackbutton.pack( side = BOTTOM)   
parent.mainloop()   

Output: 

 

 

Python Tkintergrid() method 

 
The grid() geometry manager organizes the widgets in the tabular form. We can specify the 

rows and columns as the options in the method call. We can also specify the column span 
(width) or rowspan(height) of a widget.  
This is a more organized way to place the widgets to the python application. The syntax to 

use the grid() is given below. 

Syntax 

widget.grid(options)   
 

A list of possible options that can be passed inside the grid() method is given below. 



V RajaSekhar              CSE Dept        6 

 Column 
The column number in which the widget is to be placed. The leftmost column is 
represented by 0.  

 row 
The row number in which the widget is to be placed. The topmost row is 
represented by 0. 

 

Example 

 

from tkinter import *   

parent = Tk()   

name = Label(parent,text = "Name").grid(row = 0, column = 0)   

e1 = Entry(parent).grid(row = 0, column = 1)   

password = Label(parent,text = "Password").grid(row = 1, column = 0)   

e2 = Entry(parent).grid(row = 1, column = 1)   

submit = Button(parent, text = "Submit").grid(row = 4, column = 0)   

parent.mainloop()   

 

Output: 
 

 
 

Python Tkinterplace() method 

 

The place() geometry manager organizes the widgets to the specific x and y coordinates. 

 

Syntax 

widget.place(options)   
 
A list of possible options is given below. 

 x, y: It refers to the horizontal and vertical offset in the pixels. 

 

Example 

 
from tkinter import *   

top = Tk()   
top.geometry("400x250")   



V RajaSekhar              CSE Dept        7 

name = Label(top, text = "Name").place(x = 30,y = 50)   
email = Label(top, text = "Email").place(x = 30, y = 90)   
password = Label(top, text = "Password").place(x = 30, y = 130)   

e1 = Entry(top).place(x = 80, y = 50)   
e2 = Entry(top).place(x = 80, y = 90)   

e3 = Entry(top).place(x = 95, y = 130)   
top.mainloop()   

 

Output: 
 

 

Python Tkinter Button 
 
The button widget is used to add various types of buttons to the python application. Python 
allows us to configure the look of the button according to our requirements. Various 

options can be set or reset depending upon the requirements. 
We can also associate a method or function with a button which is called when the 

button is pressed. 
The syntax to use the button widget is given below. 

 

Syntax 

W = Button(parent, options)    
 

A list of possible options is given below. 

SN Option Description 

1 activebackground 
It represents the background of the button when the mouse hover the 

button. 

2 activeforeground 
It represents the font color of the button when the mouse hover the 

button. 

3 Bd It represents the border width in pixels. 

4 Bg It represents the background color of the button. 

5 Command 
It is set to the function call which is scheduled when the function is 

called. 



V RajaSekhar              CSE Dept        8 

6 Fg Foreground color of the button. 

7 Font The font of the button text.  

8 Height 
The height of the button. The height is represented in the number of 

text lines for the textual lines or the number of pixels for the images. 

10 Highlightcolor The color of the highlight when the button has the focus. 

11 Image It is set to the image displayed on the button. 

12 Justify 

It illustrates the way by which the multiple text lines are represented. 

It is set to LEFT for left justification, RIGHT for the right 

justification, and CENTER for the center. 

13 Padx Additional padding to the button in the horizontal direction. 

14 Pady Additional padding to the button in the vertical direction. 

15 Relief 
It represents the type of the border. It can be SUNKEN, RAISED, 

GROOVE, and RIDGE. 

17 State 
This option is set to DISABLED to make the button unresponsive. 

The ACTIVE represents the active state of the button. 

18 Underline Set this option to make the button text underlined. 

19 Width 
The width of the button. It exists as a number of letters for textual 

buttons or pixels for image buttons. 

20 Wraplength 
If the value is set to a positive number, the text lines will be wrapped 

to fit within this length. 

 

Example 

#python application to create a simple button   
   

from tkinter import *    
top = Tk()   

top.geometry("200x100")   
   

b = Button(top,text = "Simple")   
b.pack()   
top.mainaloop()   

Output: 

 



V RajaSekhar              CSE Dept        9 

Example 

from tkinter import *    

from tkinter import messagebox 
 

top = Tk()   
top.geometry("200x100")   
   

def fun():   
    messagebox.showinfo("Hello", "Red Button clicked")   

   
b1 = Button(top,text = "Red",command = fun,activeforeground = "red",activebackg

round = "pink",pady=10)   
b2 = Button(top, text = "Blue",activeforeground = "blue",activebackground = "pink
",pady=10)   

b3 = Button(top, text = "Green",activeforeground = "green",activebackground = "pi
nk",pady = 10)   

b4 = Button(top, text = "Yellow",activeforeground = "yellow",activebackground = "
pink",pady = 10) b1.pack(side = LEFT)   

b2.pack(side = RIGHT)   
b3.pack(side = TOP)   
b4.pack(side = BOTTOM)   

top.mainloop()   

Output: 

 

 
 

Python Tkinter Canvas 
 The canvas widget is used to add the structured graphics to the python application. 

It is used to draw the graph and plots to the python application. The syntax to use 
the canvas is given below. 

 

Syntax 

w = canvas(parent, options)   
A list of possible options is given below. 



V RajaSekhar              CSE Dept        10 

SN Option Description 

1 Bd The represents the border width. The default width is 2. 

2 Bg It represents the background color of the canvas. 

3 confine It is set to make the canvas unscrollable outside the scroll region. 

4 cursor The cursor is used as the arrow, circle, dot, etc. on the canvas. 

5 height It represents the size of the canvas in the vertical direction. 

6 highlightcolor It represents the highlight color when the widget is focused. 

7 relief 
It represents the type of the border. The possible values are 

SUNKEN, RAISED, GROOVE, and RIDGE. 

8 scrollregion 
It represents the coordinates specified as the tuple containing the area 

of the canvas. 

9 width It represents the width of the canvas. 

10 xscrollincrement 
If it is set to a positive value. The canvas is placed only to the multiple 

of this value. 

11 xscrollcommand 
If the canvas is scrollable, this attribute should be the .set() method of 

the horizontal scrollbar. 

12 yscrollincrement Works like xscrollincrement, but governs vertical movement. 

13 yscrollcommand 
If the canvas is scrollable, this attribute should be the .set() method of 

the vertical scrollbar. 

 

Example 

from tkinter import *    
top = Tk()   

top.geometry("200x200")   

#creating a simple canvas   
c = Canvas(top,bg = "pink",height = "200")   

c.pack()   
top.mainloop()   

 

Output: 

 



V RajaSekhar              CSE Dept        11 

Example: Creating an arc 

from tkinter import *    

   
top = Tk()   

top.geometry("200x200")   
   

#creating a simple canvas   
c = Canvas(top,bg = "pink",height = "200",width = 200)   
arc = c.create_arc((5,10,150,200),start = 0,extent = 150, fill= "white")   
c.pack()   

top.mainloop()   
 

Output: 

 
 

Python TkinterCheckbutton 
 
The Checkbutton is used to track the user's choices provided to the application. In other 

words, we can say that Checkbutton is used to implement the on/off selections.  
The Checkbutton can contain the text or images. The Checkbutton is mostly used to 

provide many choices to the user among which, the user needs to choose the one. It 
generally implements many of many selections.  

 
The syntax to use the checkbutton is given below. 

Syntax 

w = checkbutton(master, options)   

 
A list of possible options is given below. 
 

SN Option Description 

1 activebackground 
It represents the background color when the checkbutton is under 

the cursor. 

2 activeforeground 
It represents the foreground color of the checkbutton when the 

checkbutton is under the cursor. 

3 Bg The background color of the button. 

4 Bitmap It displays an image (monochrome) on the button.  

5 Bd The size of the border around the corner. 

6 Command It is associated with a function to be called when the state of the 



V RajaSekhar              CSE Dept        12 

checkbutton is changed. 

7 Cursor 
The mouse pointer will be changed to the cursor name when it is 

over the checkbutton.  

8 disableforeground 
It is the color which is used to represent the text of a disabled 

checkbutton. 

9 font It represents the font of the checkbutton. 

10 fg The foreground color (text color) of the checkbutton. 

11 height 
It represents the height of the checkbutton (number of lines). The 

default height is 1. 

12 highlightcolor 
The color of the focus highlight when the checkbutton is under 

focus. 

13 image The image used to represent the checkbutton. 

14 justify 
This specifies the justification of the text if the text contains multiple 

lines. 

15 offvalue 

The associated control variable is set to 0 by default if the button is 

unchecked. We can change the state of an unchecked variable to 

some other one. 

16 onvalue 

The associated control variable is set to 1 by default if the button is 

checked. We can change the state of the checked variable to some 

other one. 

17 padx The horizontal padding of the checkbutton 

18 pady The vertical padding of the checkbutton. 

19 relief 
The type of the border of the checkbutton. By default, it is set to 

FLAT. 

20 selectcolor The color of the checkbutton when it is set. By default, it is red. 

21 selectimage The image is shown on the checkbutton when it is set. 

22 state 

It represents the state of the checkbutton. By default, it is set to 

normal. We can change it to DISABLED to make the checkbutton 

unresponsive. The state of the checkbutton is ACTIVE when it is 

under focus.  

24 underline 
It represents the index of the character in the text which is to be 

underlined. The indexing starts with zero in the text. 

25 variable 
It represents the associated variable that tracks the state of the 

checkbutton. 

26 width 
It represents the width of the checkbutton. It is represented in the 

number of characters that are represented in the form of texts. 



V RajaSekhar              CSE Dept        13 

27 wraplength 
If this option is set to an integer number, the text will be broken into 

the number of pieces. 

 

Methods 
 

The methods that can be called with the Checkbuttons are described in the following table. 
 

SN Method Description 

1 deselect() It is called to turn off the checkbutton. 

2 flash() The checkbutton is flashed between the active and normal colors. 

3 invoke() This will invoke the method associated with the checkbutton. 

4 select() It is called to turn on the checkbutton. 

5 toggle() It is used to toggle between the different Checkbuttons. 

 

Example 

from tkinter import *    

top = Tk()   

top.geometry("200x200")   

chkbtn1 = Checkbutton(top, text = "C", )   

chkbtn2 = Checkbutton(top, text = "PYTHON", )   

chkbtn3 = Checkbutton(top, text = "Java", )   

chkbtn1.pack()   

chkbtn2.pack()   

chkbtn3.pack()   

top.mainloop()   

Output: 

 
 



V RajaSekhar              CSE Dept        14 

Python Tkinter Entry 
 
The Entry widget is used to provide the single line text-box to the user to accept a value 

from the user. We can use the Entry widget to accept the text strings from the user. It can 
only be used for one line of text from the user. For multiple lines of text, we must use the 

text widget.  
 

The syntax to use the Entry widget is given below. 

Syntax 

w = Entry (parent, options)    
 
A list of possible options is given below. 

SN Option Description 

1 Bg The background color of the widget. 

2 Bd The border width of the widget in pixels. 

3 Cursor 
The mouse pointer will be changed to the cursor type set to the 

arrow, dot, etc. 

4 Exportselection 

The text written inside the entry box will be automatically copied 

to the clipboard by default. We can set the exportselection to 0 to 

not copy this. 

5 Fg It represents the color of the text. 

6 Font It represents the font type of the text. 

7 Highlightbackground 
It represents the color to display in the traversal highlight region 

when the widget does not have the input focus. 

8 Highlightcolor 
It represents the color to use for the traversal highlight rectangle 

that is drawn around the widget when it has the input focus. 

9 Highlightthickness 

It represents a non-negative value indicating the width of the 

highlight rectangle to draw around the outside of the widget 

when it has the input focus. 

10 Insertbackground 

It represents the color to use as background in the area covered 

by the insertion cursor. This color will normally override either 

the normal background for the widget. 

11 Insertborderwidth 

It represents a non-negative value indicating the width of the 3-D 

border to draw around the insertion cursor. The value may have 

any of the forms acceptable to Tk_GetPixels. 

12 Insertofftime 

It represents a non-negative integer value indicating the number 

of milliseconds the insertion cursor should remain "off" in each 

blink cycle. If this option is zero, then the cursor doesn't blink: it 

is on all the time. 



V RajaSekhar              CSE Dept        15 

13 Insertontime 

Specifies a non-negative integer value indicating the number of 

milliseconds the insertion cursor should remain "on" in each 

blink cycle. 

14 Insertwidth 

It represents the value indicating the total width of the insertion 

cursor. The value may have any of the forms acceptable to 

Tk_GetPixels. 

15 Justify 
It specifies how the text is organized if the text contains multiple 

lines. 

16 Relief It specifies the type of the border. Its default value is FLAT. 

17 Selectbackground The background color of the selected text. 

18 Selectborderwidth The width of the border to display around the selected task. 

19 Selectforeground The font color of the selected task.  

20 Show 
It is used to show the entry text of some other type instead of the 

string. For example, the password is typed using stars (*). 

21 Textvariable 
It is set to the instance of the StringVar to retrieve the text from 

the entry. 

22 Width The width of the displayed text or image. 

23 Xscrollcommand 

The entry widget can be linked to the horizontal scrollbar if we 

want the user to enter more text then the actual width of the 

widget. 

 

Example 

   

from tkinter import *   
   

top = Tk()   
top.geometry("400x250")   
name = Label(top, text = "Name").place(x = 30,y = 50)   

email = Label(top, text = "Email").place(x = 30, y = 90)   
   password = Label(top, text = "Password").place(x = 30, y = 130)   

sbmitbtn = Button(top, text = "Submit",activebackground = "pink", activeforegroun
d = "blue").place(x = 30, y = 170)  

e1 = Entry(top).place(x = 80, y = 50)   
e2 = Entry(top).place(x = 80, y = 90)   
e3 = Entry(top).place(x = 95, y = 130)   

top.mainloop()   

 

Output: 



V RajaSekhar              CSE Dept        16 

 
 

Entry widget methods 
Python provides various methods to configure the data written inside the widget. There are 

the following methods provided by the Entry widget. 

SN Method Description 

1 delete(first, last = none) 
It is used to delete the specified characters inside the 

widget. 

2 get() It is used to get the text written inside the widget. 

3 icursor(index) 

It is used to change the insertion cursor position. We can 

specify the index of the character before which, the cursor 

to be placed. 

4 index(index) 
It is used to place the cursor to the left of the character 

written at the specified index. 

5 insert(index,s) 
It is used to insert the specified string before the character 

placed at the specified index. 

6 select_adjust(index) 
It includes the selection of the character present at the 

specified index. 

7 select_clear() It clears the selection if some selection has been done. 

8 select_form(index) 
It sets the anchor index position to the character specified 

by the index. 

9 select_present() 
It returns true if some text in the Entry is selected 

otherwise returns false. 

10 select_range(start,end) 
It selects the characters to exist between the specified 

range. 

11 select_to(index) 
It selects all the characters from the beginning to the 

specified index. 

12 xview(index) It is used to link the entry widget to a horizontal scrollbar. 



V RajaSekhar              CSE Dept        17 

13 xview_scroll(number,what) It is used to make the entry scrollable horizontally. 

 

Example: A simple calculator 

 
import tkinter as tk   

from functools import partial   
    

    def call_result(label_result, n1, n2):   
    num1 = (n1.get())   
    num2 = (n2.get())   

    result = int(num1)+int(num2)   
    label_result.config(text="Result = %d" % result)   

    return   

    

root = tk.Tk()   
root.geometry('400x200+100+200')   
   

root.title('Calculator')   
    

number1 = tk.StringVar()   
number2 = tk.StringVar()   

   
labelNum1 = tk.Label(root, text="A").grid(row=1, column=0)   
labelNum2 = tk.Label(root, text="B").grid(row=2, column=0)   

   
labelResult = tk.Label(root)   

   
labelResult.grid(row=7, column=2)   

entryNum1 = tk.Entry(root, textvariable=number1).grid(row=1, column=2)   
entryNum2 = tk.Entry(root, textvariable=number2).grid(row=2, column=2)   
   

call_result = partial(call_result, labelResult, number1, number2)   
   

buttonCal = tk.Button(root, text="Calculate", command=call_result).grid(row=3, c
olumn=0)   

root.mainloop()   
 

Output: 



V RajaSekhar              CSE Dept        18 

 
 

 

Python Tkinter Frame 
 
Python Tkinter Frame widget is used to organize the group of widgets. It acts like a 

container which can be used to hold the other widgets. The rectangular areas of the screen 
are used to organize the widgets to the python application. 
 

The syntax to use the Frame widget is given below. 

 

Syntax 

w = Frame(parent,  options)   
 
A list of possible options is given below. 

 

SN Option Description 

1 Bd It represents the border width. 

2 Bg The background color of the widget.  

3 Cursor 
The mouse pointer is changed to the cursor type set to different 

values like an arrow, dot, etc. 

4 Height The height of the frame. 

5 highlightbackground The color of the background color when it is under focus. 

6 Highlightcolor The text color when the widget is under focus. 

7 highlightthickness 
It specifies the thickness around the border when the widget is 

under the focus. 

8 Relief It specifies the type of the border. The default value if FLAT. 

9 Width It represents the width of the widget. 



V RajaSekhar              CSE Dept        19 

 

Example 

from tkinter import *   

   
top = Tk()   
top.geometry("140x100")   

frame = Frame(top)   
frame.pack()   

   
leftframe = Frame(top)   

leftframe.pack(side = LEFT)   
   
rightframe = Frame(top)   

rightframe.pack(side = RIGHT)   

   

btn1 = Button(frame, text="Submit", fg="red",activebackground = "red")   
btn1.pack(side = LEFT)   

   
btn2 = Button(frame, text="Remove", fg="brown", activebackground = "brown")   
btn2.pack(side = RIGHT)   

   
btn3 = Button(rightframe, text="Add", fg="blue", activebackground = "blue")   

btn3.pack(side = LEFT)   
   

btn4 = Button(leftframe, text="Modify", fg="black", activebackground = "white")   
btn4.pack(side = RIGHT)   
   

top.mainloop()   
 

Output: 
 

 
 

Python Tkinter Label 
 

The Label is used to specify the container box where we can place the text or images. This 
widget is used to provide the message to the user about other widgets used in the python 

application.  
There are the various options which can be specified to configure the text or the part 

of the text shown in the Label.  



V RajaSekhar              CSE Dept        20 

 
The syntax to use the Label is given below. 

 

Syntax 

w = Label (master, options)   

 
A list of possible options is given below. 

 

SN Option Description 

1 Anchor 

It specifies the exact position of the text within the size provided to the 

widget. The default value is CENTER, which is used to center the text 

within the specified space. 

2 Bg The background color displayed behind the widget. 

3 Bitmap 
It is used to set the bitmap to the graphical object specified so that, the 

label can represent the graphics instead of text. 

4 Bd It represents the width of the border. The default is 2 pixels. 

5 Cursor 
The mouse pointer will be changed to the type of the cursor specified, i.e., 

arrow, dot, etc. 

6 Font The font type of the text written inside the widget. 

7 Fg The foreground color of the text written inside the widget. 

8 Height The height of the widget. 

9 Image The image that is to be shown as the label. 

10 Justify 

It is used to represent the orientation of the text if the text contains 

multiple lines. It can be set to LEFT for left justification, RIGHT for right 

justification, and CENTER for center justification. 

11 Padx The horizontal padding of the text. The default value is 1. 

12 Pady The vertical padding of the text. The default value is 1. 

13 Relief The type of the border. The default value is FLAT. 

14 Text 
This is set to the string variable which may contain one or more line of 

text. 

15 textvariable 
The text written inside the widget is set to the control variable StringVar so 

that it can be accessed and changed accordingly. 

16 underline 
We can display a line under the specified letter of the text. Set this option 

to the number of the letter under which the line will be displayed. 

17 Width The width of the widget. It is specified as the number of characters. 

18 wraplength 
Instead of having only one line as the label text, we can break it to the 

number of lines where each line has the number of characters specified to 



V RajaSekhar              CSE Dept        21 

this option. 

 

Example 1 

   
from tkinter import *   

   
top = Tk()   

   
top.geometry("400x250")   
   

#creating label   
uname = Label(top, text = "Username").place(x = 30,y = 50)   

   

#creating label   

password = Label(top, text = "Password").place(x = 30, y = 90)   
   
sbmitbtn = Button(top, text = "Submit",activebackground = "pink", activeforegroun

d = "blue").place(x = 30, y = 120)   
   

e1 = Entry(top,width = 20).place(x = 100, y = 50)   
e2 = Entry(top, width = 20).place(x = 100, y = 90)   

top.mainloop()   
 

Output: 

 
 

Python TkinterListbox 
 

The Listbox widget is used to display the list items to the user. We can place only text 
items in the Listbox and all text items contain the same font and color.  

The user can choose one or more items from the list depending upon the 

configuration. 
 

The syntax to use the Listbox is given below. 

w = Listbox(parent, options)    



V RajaSekhar              CSE Dept        22 

 
A list of possible options is given below. 
 

SN Option Description 

1 Bg The background color of the widget. 

2 Bd It represents the size of the border. Default value is 2 pixel. 

3 Cursor The mouse pointer will look like the cursor type like dot, arrow, etc. 

4 Font The font type of the Listbox items.  

5 Fg The color of the text. 

6 Height 
It represents the count of the lines shown in the Listbox. The default 

value is 10. 

7 highlightcolor The color of the Listbox items when the widget is under focus.  

8 highlightthickness The thickness of the highlight. 

9 Relief The type of the border. The default is SUNKEN. 

10 selectbackground The background color that is used to display the selected text. 

11 selectmode 

It is used to determine the number of items that can be selected from 

the list. It can set to BROWSE, SINGLE, MULTIPLE, 

EXTENDED. 

12 Width It represents the width of the widget in characters. 

13 xscrollcommand It is used to let the user scroll the Listbox horizontally.  

14 yscrollcommand It is used to let the user scroll the Listbox vertically. 

 

Methods 
There are the following methods associated with the Listbox. 

SN Method Description 

1 activate(index) It is used to select the lines at the specified index. 

2 curselection() 

It returns a tuple containing the line numbers of the selected 

element or elements, counting from 0. If nothing is selected, 

returns an empty tuple. 

3 delete(first, last = None) It is used to delete the lines which exist in the given range. 

4 get(first, last = None) It is used to get the list items that exist in the given range. 

5 index(i) 
It is used to place the line with the specified index at the top 

of the widget.  

6 insert(index, *elements) 
It is used to insert the new lines with the specified number of 

elements before the specified index. 

7 nearest(y) It returns the index of the nearest line to the y coordinate of 



V RajaSekhar              CSE Dept        23 

the Listbox widget. 

8 see(index) 
It is used to adjust the position of the listbox to make the 

lines specified by the index visible. 

9 size() 
It returns the number of lines that are present in the Listbox 

widget. 

10 xview() This is used to make the widget horizontally scrollable. 

11 xview_moveto(fraction) 
It is used to make the listbox horizontally scrollable by the 

fraction of width of the longest line present in the listbox. 

12 
xview_scroll(number, 

what) 

It is used to make the listbox horizontally scrollable by the 

number of characters specified. 

13 yview() It allows the Listbox to be vertically scrollable. 

14 yview_moveto(fraction) 
It is used to make the listbox vertically scrollable by the 

fraction of width of the longest line present in the listbox. 

15 
yview_scroll (number, 

what) 

It is used to make the listbox vertically scrollable by the 

number of characters specified. 

 

Example 1 

from tkinter import *   
   

top = Tk()   
   

top.geometry("200x250")   
   
lbl = Label(top,text = "A list of favourite countries...")   

   
listbox = Listbox(top)   

   
listbox.insert(1,"India")   

listbox.insert(2, "USA")   
listbox.insert(3, "Japan")   
listbox.insert(4, "Austrelia")   

   
lbl.pack()   

listbox.pack()   
   

top.mainloop()   

 

 

Output: 
 



V RajaSekhar              CSE Dept        24 

 
 

Example 2: Deleting the active items from the list 

 
from tkinter import *   

 
top = Tk()   

top.geometry("200x250")   
   
lbl = Label(top,text = "A list of favourite countries...")   

listbox = Listbox(top)   
   

listbox.insert(1,"India")   
listbox.insert(2, "USA")   

listbox.insert(3, "Japan")   
listbox.insert(4, "Austrelia")   
   

#this button will delete the selected item from the list    
   

btn = Button(top, text = "delete", command = lambda listbox=listbox: listbox.delete
(ANCHOR))   

 
lbl.pack()   
listbox.pack()   

btn.pack()   
top.mainloop()   

 

Output: 



V RajaSekhar              CSE Dept        25 

  After pressing the delete 

button.  

 

 

Python Tkinter Menu  
 

The Menu widget is used to create various types of menus (top level, pull down, and pop 
up) in the python application.  

The top-level menus are the one which is displayed just under the title bar of the 
parent window. We need to create a new instance of the Menu widget and add various 

commands to it by using the add() method. 
 
The syntax to use the Menu widget is given below.  

 

Syntax 

w = Menu(top, options) 

    
A list of possible options is given below.  
 

SN Option Description 

1 activebackground 
The background color of the widget when the widget is under the 

focus. 



V RajaSekhar              CSE Dept        26 

2 activeborderwidth 
The width of the border of the widget when it is under the mouse. 

The default is 1 pixel. 

3 activeforeground The font color of the widget when the widget has the focus. 

4 Bg The background color of the widget. 

5 Bd The border width of the widget. 

6 cursor 
The mouse pointer is changed to the cursor type when it hovers the 

widget. The cursor type can be set to arrow or dot.  

7 disabledforeground The font color of the widget when it is disabled.  

8 Font The font type of the text of the widget.  

9 Fg The foreground color of the widget.  

10 postcommand 
The postcommand can be set to any of the function which is called 

when the mourse hovers the menu.  

11 relief The type of the border of the widget. The default type is RAISED.  

12 image It is used to display an image on the menu.  

13 selectcolor 
The color used to display the checkbutton or radiobutton when 

they are selected.  

14 tearoff 

By default, the choices in the menu start taking place from position 

1. If we set the tearoff = 1, then it will start taking place from 0th 

position. 

15 Title 
Set this option to the title of the window if you want to change the 

title of the window. 

 

Methods  
 
The Menu widget contains the following methods.  

SN Option Description 

1 add_command(options) It is used to add the Menu items to the menu. 

2 add_radiobutton(options) This method adds the radiobutton to the menu. 

3 add_checkbutton(options) This method is used to add the checkbuttons to the menu. 

4 add_cascade(options) 
It is used to create a hierarchical menu to the parent menu 

by associating the given menu to the parent menu. 

5 add_seperator() It is used to add the seperator line to the menu. 

6 add(type, options) It is used to add the specific menu item to the menu. 

7 
delete(startindex, 

endindex) 

It is used to delete the menu items exist in the specified 

range. 

8 entryconfig(index, It is used to configure a menu item identified by the given 



V RajaSekhar              CSE Dept        27 

options) index. 

9 index(item) It is used to get the index of the specified menu item. 

10 insert_seperator(index) It is used to insert a seperator at the specified index. 

11 invoke(index) 
It is used to invoke the associated with the choice given at 

the specified index. 

12 type(index) 
It is used to get the type of the choice specified by the 

index.  

 

Creating a top level menu  
 

A top-level menu can be created by instantiating the Menu widget and adding the menu 
items to the menu. 

 

Example 1 

 
from tkinter import *   

   
top = Tk()   
   

def hello():   
    print("hello!")   

   
# create a toplevel menu   

menubar = Menu(top)   
menubar.add_command(label="Hello!", command=hello)   
menubar.add_command(label="Quit!", command=top.quit)   

   
# display the menu   

top.config(menu=menubar)   
   

top.mainloop()   
 

Output: 



V RajaSekhar              CSE Dept        28 

 
 

Clicking the hello Menubutton will print the hello on the console while clicking the Quit 
Menubutton will make an exit from the python application. 

 

Example 2 

from tkinter import Toplevel, Button, Tk, Menu   

   
top = Tk()   
menubar = Menu(top)   

file = Menu(menubar, tearoff=0)   
file.add_command(label="New")   

file.add_command(label="Open")   
file.add_command(label="Save")   

file.add_command(label="Save as...")   
file.add_command(label="Close")   
   

file.add_separator()   
   

file.add_command(label="Exit", command=top.quit)   
   

menubar.add_cascade(label="File", menu=file)   
edit = Menu(menubar, tearoff=0)   
edit.add_command(label="Undo")   

   
edit.add_separator()   

   
edit.add_command(label="Cut")   

edit.add_command(label="Copy")   
edit.add_command(label="Paste")   
edit.add_command(label="Delete")   

edit.add_command(label="Select All")   
   

menubar.add_cascade(label="Edit", menu=edit)   



V RajaSekhar              CSE Dept        29 

help = Menu(menubar, tearoff=0)   
help.add_command(label="About")   
menubar.add_cascade(label="Help", menu=help)   

   
top.config(menu=menubar)   

top.mainloop()   

 

Output: 

 
 

Python Tkinter Message 
 

The Message widget is used to show the message to the user regarding the behaviour of the 
python application. The message widget shows the text messages to the user which can not 

be edited.  
The message text contains more than one line. However, the message can only be shown in 
the single font.  

The syntax to use the Message widget is given below.  

Syntax 

w = Message(parent, options)   
A list of possible options is given below.  

SN Option Description 

1 Anchor 

It is used to decide the exact position of the text within the space provided 

to the widget if the widget contains more space than the need of the text. 

The default is CENTER.  

2 Bg The background color of the widget.  

3 Bitmap 
It is used to display the graphics on the widget. It can be set to any 

graphical or image object.  

4 Bd It represents the size of the border in the pixel. The default size is 2 pixel. 

5 Cursor The mouse pointer is changed to the specified cursor type. The cursor 



V RajaSekhar              CSE Dept        30 

type can be an arrow, dot, etc. 

6 Font The font type of the widget text.  

7 Fg The font color of the widget text.  

8 Height The vertical dimension of the message. 

9 Image We can set this option to a static image to show that onto the widget.  

10 Justify 

This option is used to specify the alignment of multiple line of code with 

respect to each other. The possible values can be LEFT (left alignment), 

CENTER (default), and RIGHT (right alignment).  

11 Padx The horizontal padding of the widget. 

12 Pady The vertical padding of the widget.  

13 Relief It represents the type of the border. The default type is FLAT.  

14 Text 
We can set this option to the string so that the widget can represent the 

specified text.  

15 Textvariable 
This is used to control the text represented by the widget. The textvariable 

can be set to the text that is shown in the widget.  

16 Underline 

The default value of this option is -1 that represents no underline. We can 

set this option to an existing number to specify that nth letter of the string 

will be underlined.  

17 Width 
It specifies the horizontal dimension of the widget in the number of 

characters (not pixel). 

18 Wraplength 
We can wrap the text to the number of lines by setting this option to the 

desired number so that each line contains only that number of characters.  

 

Example 

from tkinter import *   
   

top = Tk()   
top.geometry("100x100")   
  

msg = Message( top, text = "Welcome to Python Programming")   
   

msg.pack()   
top.mainloop()   

 

Output: 



V RajaSekhar              CSE Dept        31 

 

Python TkinterRadiobutton 
 
The Radiobutton widget is used to implement one-of-many selection in the python 
application. It shows multiple choices to the user out of which, the user can select only one 

out of them. We can associate different methods with each of the radiobutton.  
We can display the multiple line text or images on the radiobuttons. To keep track 

the user's selection the radiobutton, it is associated with a single variable. Each button 
displays a single value for that particular variable. 

 
The syntax to use the Radiobutton is given below.  

Syntax 

w = Radiobutton(top, options)   
 

SN Option Description 

1 activebackground The background color of the widget when it has the focus.  

2 activeforeground The font color of the widget text when it has the focus.  

3 anchor 

It represents the exact position of the text within the widget if the 

widget contains more space than the requirement of the text. The 

default value is CENTER. 

4 Bg The background color of the widget.  

5 bitmap 
It is used to display the graphics on the widget. It can be set to 

any graphical or image object.  

6 borderwidth It represents the size of the border.  

7 command 
This option is set to the procedure which must be called every-

time when the state of the radiobutton is changed. 

8 cursor 
The mouse pointer is changed to the specified cursor type. It can 

be set to the arrow, dot, etc.  

9 Font It represents the font type of the widget text.  

10 Fg The normal foreground color of the widget text.  



V RajaSekhar              CSE Dept        32 

11 height 
The vertical dimension of the widget. It is specified as the number 

of lines (not pixel). 

12 highlightcolor 
It represents the color of the focus highlight when the widget has 

the focus. 

13 highlightbackground 
The color of the focus highlight when the widget is not having the 

focus.  

14 image 
It can be set to an image object if we want to display an image on 

the radiobutton instead the text.  

15 justify 
It represents the justification of the multi-line text. It can be set to 

CENTER(default), LEFT, or RIGHT.  

16 padx The horizontal padding of the widget.  

17 pady The vertical padding of the widget.  

18 relief The type of the border. The default value is FLAT.  

19 selectcolor The color of the radio button when it is selected.  

20 selectimage The image to be displayed on the radiobutton when it is selected.  

21 state 

It represents the state of the radio button. The default state of the 

Radiobutton is NORMAL. However, we can set this to 

DISABLED to make the radiobutton unresponsive.  

22 Text The text to be displayed on the radiobutton.  

23 textvariable It is of String type that represents the text displayed by the widget.  

24 underline 
The default value of this option is -1, however, we can set this 

option to the number of character which is to be underlined.  

25 value 
The value of each radiobutton is assigned to the control variable 

when it is turned on by the user.  

26 variable 
It is the control variable which is used to keep track of the user's 

choices. It is shared among all the radiobuttons.  

27 width 
The horizontal dimension of the widget. It is represented as the 

number of characters. 



V RajaSekhar              CSE Dept        33 

28 wraplength 

We can wrap the text to the number of lines by setting this option 

to the desired number so that each line contains only that number 

of characters.  

Methods 

The radiobutton widget provides the following methods.  

SN Method Description 

1 deselect() It is used to turn of the radiobutton.  

2 flash() 
It is used to flash the radiobutton between its active and normal colors few 

times.  

3 invoke() 
It is used to call any procedure associated when the state of a Radiobutton is 

changed.  

4 select() It is used to select the radiobutton.  

Example 

 

from tkinter import *   
   
def selection():   

   selection = "You selected the option " + str(radio.get())   
   label.config(text = selection)   

   
top = Tk()   

top.geometry("300x150")   
radio = IntVar()   
lbl = Label(text = "Favourite programming language:")   

lbl.pack()   
R1 = Radiobutton(top, text="C", variable=radio, value=1,command=selection)   

R1.pack( anchor = W )   

   

R2 = Radiobutton(top, text="C++", variable=radio, value=2, command=selection) 
  
R2.pack( anchor = W )   

   
R3 = Radiobutton(top, text="Java", variable=radio, value=3,  command=selection)

   
R3.pack( anchor = W)   

   



V RajaSekhar              CSE Dept        34 

label = Label(top)   
label.pack()   
top.mainloop()   

 

Output: 
 

 

Python Tkinter Scrollbar  
 

The scrollbar widget is used to scroll down the content of the other widgets like listbox, 
text, and canvas. However, we can also create the horizontal scrollbars to the Entry widget.  
 

The syntax to use the Scrollbar widget is given below.  

 

Syntax 

w = Scrollbar(top, options)    
 
A list of possible options is given below.  

SN Option Description 

1 activebackground The background color of the widget when it has the focus. 

2 Bg The background color of the widget. 

3 Bd The border width of the widget.  

4 command 
It can be set to the procedure associated with the list which can 

be called each time when the scrollbar is moved. 

5 cursor 
The mouse pointer is changed to the cursor type set to this option 

which can be an arrow, dot, etc. 

6 elementborderwidth 
It represents the border width around the arrow heads and slider. 

The default value is -1. 

7 Highlightbackground The focus highlighcolor when the widget doesn't have the focus. 

8 highlighcolor The focus highlighcolor when the widget has the focus.  

9 highlightthickness It represents the thickness of the focus highlight. 

10 jump It is used to control the behavior of the scroll jump. If it set to 1, 



V RajaSekhar              CSE Dept        35 

then the callback is called when the user releases the mouse 

button. 

11 orient 
It can be set to HORIZONTAL or VERTICAL depending upon 

the orientation of the scrollbar.  

12 repeatdelay 

This option tells the duration up to which the button is to be 

pressed before the slider starts moving in that direction 

repeatedly. The default is 300 ms. 

13 repeatinterval The default value of the repeat interval is 100. 

14 takefocus 
We can tab the focus through this widget by default. We can set 

this option to 0 if we don't want this behavior. 

15 troughcolor It represents the color of the trough.  

16 width It represents the width of the scrollbar. 

 

Methods  
 
The widget provides the following methods.  

SN Method Description 

1 get() 
It returns the two numbers a and b which represents the current position of 

the scrollbar. 

2 
set(first, 

last) 

It is used to connect the scrollbar to the other widget w. The 

yscrollcommand or xscrollcommand of the other widget to this method.  

 

Example 

from tkinter import *   
   

top = Tk()   
sb = Scrollbar(top)   
sb.pack(side = RIGHT, fill = Y)   

   
mylist = Listbox(top, yscrollcommand = sb.set )   

   
for line in range(30):   

    mylist.insert(END, "Number " + str(line))   
   
mylist.pack( side = LEFT )   

sb.config( command = mylist.yview )   
   

mainloop()   
 

Output: 



V RajaSekhar              CSE Dept        36 

 
 

Python Tkinter Text  
 

The Text widget is used to show the text data on the Python application. However, Tkinter 

provides us the Entry widget which is used to implement the single line text box.  

The Text widget is used to display the multi-line formatted text with various styles 
and attributes. The Text widget is mostly used to provide the text editor to the user. 

 
The Text widget also facilitates us to use the marks and tabs to locate the specific sections 
of the Text. We can also use the windows and images with the Text as it can also be used 

to display the formatted text.  
The syntax to use the Text widget is given below.  

 

Syntax 

w = Text(top, options)   
 

A list of possible options that can be used with the Text widget is given below.  

SN Option Description 

1 Bg The background color of the widget.  

2 Bd It represents the border width of the widget.  

3 Cursor 
The mouse pointer is changed to the specified cursor type, i.e. 

arrow, dot, etc. 

4 Exportselection 

The selected text is exported to the selection in the window 

manager. We can set this to 0 if we don't want the text to be 

exported.  

5 Font The font type of the text. 

6 Fg The text color of the widget. 

7 Height The vertical dimension of the widget in lines.  

8 highlightbackground The highlightcolor when the widget doesn't has the focus. 

9 highlightthickness The thickness of the focus highlight. The default value is 1. 

10 Highlighcolor The color of the focus highlight when the widget has the focus.  



V RajaSekhar              CSE Dept        37 

11 Insertbackground It represents the color of the insertion cursor.  

12 insertborderwidth 
It represents the width of the border around the cursor. The 

default is 0. 

13 Insertofftime 
The time amount in Milliseconds during which the insertion 

cursor is off in the blink cycle.  

14 Insertontime 
The time amount in Milliseconds during which the insertion 

cursor is on in the blink cycle.  

15 Insertwidth It represents the width of the insertion cursor.  

16 Padx The horizontal padding of the widget.  

17 Pady The vertical padding of the widget.  

18 Relief The type of the border. The default is SUNKEN.  

19 Selectbackground The background color of the selected text.  

20 selectborderwidth The width of the border around the selected text.  

21 spacing1 
It specifies the amount of vertical space given above each line of 

the text. The default is 0.  

22 spacing2 

This option specifies how much extra vertical space to add 

between displayed lines of text when a logical line wraps. The 

default is 0. 

23 spacing3 
It specifies the amount of vertical space to insert below each line 

of the text.  

24 State 
It the state is set to DISABLED, the widget becomes 

unresponsive to the mouse and keyboard unresponsive. 

25 Tabs 
This option controls how the tab character is used to position the 

text. 

26 Width It represents the width of the widget in characters. 

27 Wrap 

This option is used to wrap the wider lines into multiple lines. Set 

this option to the WORD to wrap the lines after the word that fit 

into the available space. The default value is CHAR which breaks 

the line which gets too wider at any character. 

28 Xscrollcommand 
To make the Text widget horizontally scrollable, we can set this 

option to the set() method of Scrollbar widget. 

29 Yscrollcommand 
To make the Text widget vertically scrollable, we can set this 

option to the set() method of Scrollbar widget.  

 

Methods  

 



V RajaSekhar              CSE Dept        38 

We can use the following methods with the Text widget.  

SN Method Description 

1 
delete(startindex, 

endindex) 

This method is used to delete the characters of the specified 

range.  

2 
get(startindex, 

endindex) 
It returns the characters present in the specified range.  

3 index(index) It is used to get the absolute index of the specified index.  

4 insert(index, string) It is used to insert the specified string at the given index.  

5 see(index) 
It returns a boolean value true or false depending upon whether 

the text at the specified index is visible or not.  

 

Mark handling methods  
Marks are used to bookmark the specified position between the characters of the associated 
text.  

SN Method Description 

1 index(mark) It is used to get the index of the specified mark.  

2 mark_gravity(mark, gravity) It is used to get the gravity of the given mark.  

3 mark_names() It is used to get all the marks present in the Text widget.  

4 mark_set(mark, index) It is used to inform a new position of the given mark. 

5 mark_unset(mark) It is used to remove the given mark from the text.  

 

Tag handling methods  
 

The tags are the names given to the separate areas of the text. The tags are used to 
configure the different areas of the text separately. The list of tag-handling methods along 

with the description is given below.  

SN Method Description 

1 
tag_add(tagname, startindex, 

endindex) 

This method is used to tag the string present in 

the specified range.  

2 tag_config 
This method is used to configure the tag 

properties.  

3 tag_delete(tagname) This method is used to delete a given tag. 

4 
tag_remove(tagname, startindex, 

endindex) 

This method is used to remove a tag from the 

specified range.  

 

Example 

from tkinter import *   

   



V RajaSekhar              CSE Dept        39 

top = Tk()   
text = Text(top)   
text.insert(INSERT, "Name.....")   

text.insert(END, "Salary.....")   
   

text.pack()   
   

text.tag_add("Write Here", "1.0", "1.4")   
text.tag_add("Click Here", "1.8", "1.13")   
   

text.tag_config("Write Here", background="yellow", foreground="black")   
text.tag_config("Click Here", background="black", foreground="white")   

   
top.mainloop()   

Output: 

 
 

Other GUIs 

General GUI development using many of the abundant number of graphical toolkits that 

exist under Python, but alas, that is for the future. As a proxy, we would like to present a 

single simple GUI application written using four of the more popular and available toolkits 

out there: Tix (Tk Interface eXtensions), Pmw (Python MegaWidgetsTkinter extension), 

wxPython (Python binding to wxWidgets), and PyGTK (Python binding to GTK+). 

Tix, the Tk Interface eXtension, is a powerful set of user interface components that 

expands the capabilities of your Tcl/Tk and Python applications. Using Tix together with 

Tk will greatly enhance the appearance and functionality of your application. 

 

It uses the Tix module. Tix comes with Python! 

Example: 



V RajaSekhar              CSE Dept        40 

 

from tkinter import * 

from tkinter.tix import Control, ComboBox 

 

top = Tk() 

top.tk.eval('package require Tix') 

 

lb = Label(top,text='Animals (in pairs; min: pair, max: dozen)') 

lb.pack() 

 

ct = Control(top, label='Number:',integer=True, max=12, min=2, value=2, step=2) 

ct.label.config(font='Helvetica -14 bold') 

ct.pack() 

 

cb = ComboBox(top, label='Type:', editable=True) 

for animal in ('dog', 'cat', 'hamster', 'python'): 

cb.insert(END, animal) 

cb.pack() 

 

qb = Button(top, text='QUIT',command=top.quit, bg='red', fg='white') 

qb.pack() 

 

top.mainloop() 

 

Output: 

 

 

Python Mega Widgets 

PMW (Python Mega Widgets) is a toolkit for building high -level widgets in Python using 
the Tkinter module. This toolkit provides a frame work that contains a variety of widgets 

richer than the one provided by Tkinter. 

It basically helps the extend its longevity by adding more modern widgets to the GUI 

Palette.This package is 100% written in Python, which turns out to be a cross -platform 



V RajaSekhar              CSE Dept        41 

widget library. Being highly configurable allows it to create additional widget collections by 

extending the basic Tkinter widget core set. 

PMW provides many interesting and complex widgets, including: About Dialog, Balloon, 
Button Box, Combo Box, Combo Box Dialog, Counter, CounterDialog, Dialog, Entry 

Field, Group, Labeled Widget, MenuBar, Message Bar, Message Dialog, Note BookR, 
Note BookS, Note Book, Option Menu, Paned Widget, Prompt Dialog, RadioSelect, 
Scrolled Canvas, Scrolled Field, ScrolledFrame, Scrolled Listbox, ScrolledText, Selection 

Dialog, Text Dialog, and Time Counter.  

Example: 

from Tkinter import Button, END, Label, W 

from Pmw import initialise, ComboBox, Counter 

 

top = initialise() 

 

lb = Label(top, 

text='Animals (in pairs; min: pair, max: dozen)') 

lb.pack() 

 

ct = Counter(top, labelpos=W, label_text='Number:', 

datatype='integer', entryfield_value=2, 

increment=2, entryfield_validate={'validator':'integer', 'min': 2, 'max': 12}) 

ct.pack() 

cb = ComboBox(top, labelpos=W, label_text='Type:') 

for animal in ('dog', 'cat', 'hamster', 'python'): 

cb.insert(end, animal) 

cb.pack() 

 

qb = Button(top, text='QUIT', 

command=top.quit, bg='red', fg='white') 

qb.pack() 

 

 

wxWidgets and wxPython 
 
wxWidgets (formerly known as wxWindows) is a cross-platform toolkit used to build 

graphical user applications. It is implemented using C++ and is available on a wide 

number of platforms to which wxWidgets defines a consistent and common API. The best 

part of all is that wxWidgets uses the native GUI on each platform, so your program will 

have the same ook-and-feel as all the other applications on your desktop. Another feature is 



V RajaSekhar              CSE Dept        42 

that you are not restricted to developing wxWidgets applications in C++. There are 

interfaces to both Python and Perl. 

 

Related Modules and Other GUIs 
 
There are other GUI development systems that can be used with Python. We present the 
appropriate modules along with their corresponding window systems. Table represents the 

GUI Systems Available for Python 

 

GUI Module or System Description 
 

 



V RajaSekhar              CSE Dept        43 

 

 



V RajaSekhar              CSE Dept        1 

Python Programming 

MODULE – V 

Agenda: 

 Web Programming: Introduction,  

 Wed Surfing with Python,  

 Creating Simple Web Clients,  

 Advanced Web Clients,  

 CGI-Helping Servers Process Client Data, 

  Building CGI Application Advanced CGI, 

  Web (HTTP) Servers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V RajaSekhar              CSE Dept        2 

Web Surfing: 

In Client/Sewer Computing In client/server computing web clients are browsers i.e., the applications 
that allow the users to look for the documents on worldwide web.  

The web servers are the processes which run on information provider host computers. The client’s  
send requests to server which processes those requests and returns the data.  

Client  

 

The above figure depicts web surfing where a user runs a web client program like browser and 
establishes connection to web server on internet to obtain information The requests of clients include 
form submission, page request or information display. These requests are serviced by the server. The 
communication protocol that is used by web servers and clients is HTTP. It is a stateless protocol that 
does not keep track of inform ton from one client request to next It handles even/ request as separate 
service request including the new requests. Internet Internet is simply referred to a collection of 
different physical networks such as LAN s, MANs and WANs. These networks are connected with each 
other in order to transmit the data from a computer on one network to computer on another network. 
In simple terms it is a network of networks i.e., collection of two or m are networks connected to each 
other with the help of widely available internet working devices such as router; gateway; bridges etc. 
The architecture of internet completely depends upon standard TCP/ IP and is designed to connect any 
the network; irrespective of difference in software, hardware and technical design. 



V RajaSekhar              CSE Dept        3 

 


